Modeling of Fiber Optic Strain Responses to Shear Deformation of Fractures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluid Flow in the Fracture
2.2. Modeling the Mechanical Behavior of Fractures
2.3. Calculating Strain/Strain Rate
3. Results
3.1. Strain Signatures in Response to Shear Deformation of a Fracture
3.1.1. Case 1: Natural Fracture Strike Is Perpendicular to the Fiber
3.1.2. Case 2: Natural Fracture Strike Parallel to the Fiber
3.1.3. Case 3: Natural Fracture Strike Is 45 Degrees to the Fiber
3.1.4. Case 4: Strike Slip Fault Perpendicular to the Fiber
3.1.5. Case 5: Fiber Intersects the Fracture
3.2. Application to the FOGMORE Project of Utah FORGE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wu, Z.; Wang, F. Research Progress of Applying Distributed Fiber Optic Measurement Technology in Hydraulic Fracturing and Production Monitoring. Energies 2022, 15, 7519. [Google Scholar] [CrossRef]
- Jin, G.; Ugueto, G.; Wojtaszek, M.; Guzik, A.; Jurick, D.; Kishida, K. Novel Near-Wellbore Fracture Diagnosis for Unconventional Wells Using High-Resolution Distributed Strain Sensing during Production. SPE J. 2021, 26, 3255–3264. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Jin, G.; Moridis, G.; Kerr, E.; Scofield, R.; Johnson, A. Fracture-Hit Detection Using LF-Das Signals Measured during Multifracture Propagation in Unconventional Reservoirs. SPE Reserv. Eval. Eng. 2021, 24, 523–535. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, G.; Wu, K.; Moridis, G. Hydraulic-Fracture-Width Inversion Using Low-Frequency Distributed-Acoustic-Sensing Strain Data Part II: Extension for Multifracture and Field Application. SPE J. 2021, 26, 2703–2715. [Google Scholar] [CrossRef]
- Liu, Y. Quantitative Hydraulic-Fracture Geometry Characterization with LF-DAS Strain Data: Numerical Analysis and Field Applications. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, Virtual, 4–6 May 2021. SPE-204158-MS. [Google Scholar]
- Ugueto, G.A.; Wojtaszek, M.; Mondal, S.; Guzik, A.; Jurick, D.; Jin, G. New Fracture Diagnostic Tool for Unconventionals: High-Resolution Distributed Strain Sensing via Rayleigh Frequency Shift during Production in Hydraulic Fracture Test 2. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, URTC, Houston, TX, USA, 26–28 July 2021. [Google Scholar]
- Tan, Y.; Wang, S.; Rijken, M.C.M.; Hughes, K.; Lim, I.; Ning, C.; Zhang, Z.; Fang, Z. Geomechanical Template for Distributed Acoustic Sensing Strain Patterns during Hydraulic Fracturing. SPE J. 2021, 26, 627–638. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, Z.; Stefani, J.; DiSiena, J.; Bevc, D.; Ning, I.L.C.; Hughes, K.; Tan, Y. Fiber Optic Strain Monitoring of Hydraulic Stimulation: Geomechanical Modeling and Sensitivity Analysis. In Proceedings of the Unconventional Resources Technology Conference, Virtual, 20–22 July 2020. [Google Scholar]
- Ratnayake, R.; Ghassemi, A. Modeling of Distributed Strain Sensing (DSS) in Utah FORGE Stimulations. In Proceedings of the 48th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 6–8 February 2023. [Google Scholar]
- Ratnayake, R.; Ghassemi, A. Modeling of Fiber Optic Strain Responses to Shear Deformation of Fractures. In Proceedings of the Society of Petroleum Engineers—SPE/AAPG/SEG Unconventional Resources Technology Conference, URTC, Denver, CO, USA, 13–15 June 2023. [Google Scholar]
- Katsikadelis, J. Boundary Elements: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2002; ISBN 0080441076. [Google Scholar]
- Brebbia, A.; Telles, F.; Wrobel, C. Boundary Element Techniques-Theory and Applications in Engineering, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Kuriyama, K.; Mizuta, Y.; Mozumi, H.; Watanabe, T. Three-Dimensional Elastic Analysis by the Boundary Element Method with Analytical Integrations over Triangular Leaf Elements. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1995, 32, 320A. [Google Scholar] [CrossRef]
- Safari, R.; Ghassemi, A. 3D Thermo-Poroelastic Analysis of Fracture Network Deformation and Induced Micro-Seismicity in Enhanced Geothermal Systems. Geothermics 2015, 58, 1–14. [Google Scholar] [CrossRef]
- Curran, J.H.; Carvalho, J.L. A Displacement Discontinuity Model For Fluid-Saturated Porous Media. In Proceedings of the 6th ISRM Congress, Montreal, QC, Canada, 30 August–3 September 1987. [Google Scholar]
- Vandamme, L.; Curran, J.H. A Three-dimensional Hydraulic Fracturing Simulator. Int. J. Numer. Methods Eng. 1989, 28, 909–927. [Google Scholar] [CrossRef]
- Vandamme, L.M.; Roegiers, J.-C.; Schlumberger, D. Poroelasticity in Hydraulic Fracturing Simulators. J. Pet. Technol. 1990, 42, 1199–1203. [Google Scholar] [CrossRef]
- Ghassemi, A.; Roegiers, J. A Three-Dimensional Poroelastic Hydraulic Fracture Simulator Using the Displacement Discontinuity Method; In Proceedings of the 2nd North American Rock Mechanics Symposium, Montreal, QC, Canada, 19–21 June 1996.
- Ghassemi, A.; Zhou, X. A Three-Dimensional Thermo-Poroelastic Model for Fracture Response to Injection/Extraction in Enhanced Geothermal Systems. Geothermics 2011, 40, 39–49. [Google Scholar] [CrossRef]
- Wu, K.; Olson, J.E. A Simplified Three-Dimensional Displacement Discontinuity Method for Multiple Fracture Simulations. Int. J. Fract. 2015, 193, 191–204. [Google Scholar] [CrossRef]
- Kumar, D.; Ghassemi, A. A Three-Dimensional Analysis of Simultaneous and Sequential Fracturing of Horizontal Wells. J. Pet. Sci. Eng. 2016, 146, 1006–1025. [Google Scholar] [CrossRef]
- Witherspoon, P.A.; Wang, J.S.Y.; Iwai, K.; Gale, J.E. Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. Water Resour. Res. 1980, 16, 1016–1024. [Google Scholar] [CrossRef]
- Ratnayake, R.; Ghassemi, A. The Role of Thermo-Poroelastic Effects in Utah FORGE Stimulation Experiments. In Proceedings of the Geothermal Rising Conference (GRC), Reno, NV, USA, 28–31 August 2022. [Google Scholar]
- McLennan, J.; England, K.; Rose, P.; Moore, J.; Barker, B. Stimulation of a High-Temperature Granitic Reservoir at the Utah FORGE Site. In Proceedings of the Society of Petroleum Engineers—SPE Hydraulic Fracturing Technology Conference and Exhibition, HFTC, The Woodlands, TX, USA, 31 January–2 February 2023. [Google Scholar]
E | Young’s Modulus | 5.387 × 104 | MPa |
ν | Drained Poisson’s ratio | 0.29 | - |
νu | Undrained Poisson’s ratio | 0.35 | - |
φ | Porosity | 0.05 | - |
μ | Fluid viscosity | 1.00 × 10−3 | Pa.s |
B | Skempton’s coefficient | 0.47 | - |
cf | Fluid diffusivity | 3.08 × 10−5 | m2/s |
α | Biot’s effective stress coefficient | 0.69 | - |
k | Permeability | 4.5 × 10−5 | Darcy |
φ | Friction angle | 35 | Degrees |
c | Cohesion | 0.6 × 106 | Pa |
Ks | Shear stiffness | 2.0 × 1010 | Pa/m |
Kn | Normal stiffness | 2.0 × 1010 | Pa/m |
Sv | Vertical stress | 30.87 | MPa |
SH | Maximum horizontal stress | 25.97 | MPa |
Sh | Minimum horizontal stress | 24.89 | MPa |
E | Young’s Modulus | 5.387 × 104 | MPa |
ν | Drained Poisson’s ratio | 0.29 | - |
νu | Undrained Poisson’s ratio | 0.35 | - |
k | Permeability | 4.5 × 10−5 | Darcy |
φ | Porosity | 0.05 | - |
B | Skempton’s coefficient | 0.47 | - |
μ | Fluid viscosity | 1.00 × 10−3 | Pa.s |
cf | Fluid diffusivity | 3.08 × 10−5 | m2/s |
α | Biot’s effective stress coefficient | 0.69 | - |
Sv | Vertical stress | 64.96 | MPa |
Sh | Minimum horizontal stress | 45.11 | MPa |
SH | Maximum horizontal stress | 55.77 | MPa |
- | Duration of injection | 5 | hours |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratnayake, R.; Ghassemi, A. Modeling of Fiber Optic Strain Responses to Shear Deformation of Fractures. Energies 2024, 17, 2142. https://doi.org/10.3390/en17092142
Ratnayake R, Ghassemi A. Modeling of Fiber Optic Strain Responses to Shear Deformation of Fractures. Energies. 2024; 17(9):2142. https://doi.org/10.3390/en17092142
Chicago/Turabian StyleRatnayake, Ruwantha, and Ahmad Ghassemi. 2024. "Modeling of Fiber Optic Strain Responses to Shear Deformation of Fractures" Energies 17, no. 9: 2142. https://doi.org/10.3390/en17092142
APA StyleRatnayake, R., & Ghassemi, A. (2024). Modeling of Fiber Optic Strain Responses to Shear Deformation of Fractures. Energies, 17(9), 2142. https://doi.org/10.3390/en17092142