Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network
Abstract
:1. Introduction
2. Dataset and Data Preprocessing
3. Prediction Model
4. Results and Discussion
5. Conclusions and Future Work
- Data preprocessing: Fill in missing data, assign icing labels, balance the number of samples between normal and ice conditions, and select the features from the SCADA and meteorological data for icing prediction.
- Predictor: Separate the selected features into “training” and “testing” samples to develop and evaluate a Temporal Convolutional Network (TCN) with binary output (ice or normal condition).
- The accuracy and score of the TCN predictor from a 10 min prediction horizon to a 48 h prediction horizon are shown in Figure 6. This figure shows how predictor performance decreases with the prediction horizon, which is expected.
- The average accuracy and score every 12 h interval are in Table 9.
- The average accuracy for a short-term prediction horizon (from 10 min to 1 day) is 81.6%, while the average accuracy for a long-term prediction horizon (from 10 min to 2 days) drops to 77.6%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadorsky, P. Wind Energy for Sustainable Development: Driving Factors and Future Outlook. J. Clean. Prod. 2021, 289, 125779. [Google Scholar] [CrossRef]
- Chang, L.; Saydaliev, H.B.; Meo, M.S.; Mohsin, M. How renewable energy matter for environmental sustainability: Evidence from top-10 wind energy consumer countries of European Union. Sustain. Energy Grids Netw. 2022, 31, 100716. [Google Scholar] [CrossRef]
- Hochart, C.; Fortin, G.; Perron, J.; Ilinca, A. Wind turbine performance under icing conditions. Wind Energy 2008, 11, 319–333. [Google Scholar] [CrossRef]
- Li, Y.; Tagawa, K.; Feng, F.; Li, Q.; He, Q. A wind tunnel experimental study of icing on wind turbine blade airfoil. Energy Convers. Manag. 2014, 85, 591–595. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Alsabagh, A.; Tiu, W.; Xu, Y.; Virk, M. A review of the effects of ice accretion on the structural behavior of wind turbines. Wind. Eng. 2013, 37, 59–70. [Google Scholar] [CrossRef]
- Lacroix, A.; Manwell, J. Wind Energy: Cold Weather Issues. University of Massachusetts at Amherst, Renewable Energy Laboratory. 2000. Available online: https://www.researchgate.net/publication/237706746_Wind_Energy_Cold_Weather_Issues (accessed on 23 December 2023).
- Gantasala, S.; Luneno, J.; Aidanpaa, J. Detection of ice mass based on the natural frequencies of wind turbine blade. Wind. Energy Sci. Discuss. 2016, 2016, 1–17. [Google Scholar]
- Guan, B.; Su, Z.; Yu, Q.; Li, Z.; Feng, W.; Yang, D.; Zhang, D. Monitoring the blades of a wind turbine by using videogrammetry. Opt. Lasers Eng. 2022, 152, 106901. [Google Scholar] [CrossRef]
- Rizk, P.; Al Saleh, N.; Younes, R.; Ilinca, A.; Khoder, J. Hyperspectral imaging applied for the detection of wind turbine blade damage and icing. Remote Sens. Appl. Soc. Environ. 2020, 18, 100291. [Google Scholar] [CrossRef]
- Dong, X.; Gao, D.; Li, J.; Zhang, J.; Zheng, K. Blades icing identification model of wind turbines based on SCADA data. Renew. Energy 2020, 162, 575–586. [Google Scholar] [CrossRef]
- Karami, F.; Zhang, Y.; Rotea, M.; Bernardoni, F.; Leonardi, S. Real-time wind direction estimation using machine learning on operational wind farm data. In Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 14–17 December 2021; pp. 2456–2461. [Google Scholar]
- Kreutz, M.; Ait-Alla, A.; Varasteh, K.; Oelker, S.; Greulich, A.; Freitag, M.; Thoben, K.D. Machine Learning-based Icing Prediction on Wind Turbines. Procedia Cirp. 2019, 81, 423–428. [Google Scholar] [CrossRef]
- Tao, C.; Tao, T.; Bai, X.; Liu, Y. Wind Turbine Blade Icing Prediction Using Focal Loss Function and CNN-Attention-GRU Algorithm. Energies 2023, 16, 5621. [Google Scholar] [CrossRef]
- Zhang, D.; Tian, W.; Cheng, X.; Shi, F.; Qiu, H.; Liu, X.; Chen, S. FedBIP: A Federated Learning Based Model for Wind Turbine Blade Icing Prediction. IEEE Trans. Instrum. Meas. 2023, 72, 3516011. [Google Scholar] [CrossRef]
- Jovi, A.; Brki, K.; Bogunovi, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar]
- Batista, G.; Prati, R.; Monard, M. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Liu, L.; Guan, D.; Wang, Y.; Ding, C.; Wang, M.; Chu, M. Data-Driven Prediction of Wind Turbine Blade Icing. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 5211–5216. [Google Scholar]
- Bai, X.; Tao, T.; Gao, L.; Tao, C.; Liu, Y. Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing. Renew. Energy 2023, 211, 412–419. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y. Convolutional sequence to sequence learning. Int. Conf. Mach. Learn. 2017, 70, 1243–1252. [Google Scholar]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Geibel, M.; Bangga, G. Data reduction and reconstruction of wind turbine wake employing data driven approaches. Energies 2022, 15, 3773. [Google Scholar] [CrossRef]
- Ali, N.; Calaf, M.; Cal, R. Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes. J. Renew. Sustain. Energy 2021, 13, 2. [Google Scholar] [CrossRef]
- Visualcrossing. Available online: https://www.visualcrossing.com (accessed on 13 November 2023).
- Swenson, L.; Gao, L.; Hong, J.; Shen, L. An Efficacious Model for Predicting Icing-induced Energy Loss for Wind Turbines. Appl. Energy 2022, 305, 117809. [Google Scholar] [CrossRef]
- Davis, N.N.; Pinson, P.; Hahmann, A.N.; Clausen, N.E.; Žagar, M. Identifying and Characterizing the Impact of Turbine Icing on Wind Farm Power Generation. Wind Energy 2016, 19, 1503–1518. [Google Scholar] [CrossRef]
- Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K. Fisher discriminant analysis with kernels. In Proceedings of the Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), Madison, WI, USA, 25 August 1999; pp. 41–48. [Google Scholar]
- Lea, C.; Vidal, R.; Reiter, A.; Hager, G. Temporal convolutional networks: A unified approach to action segmentation. In Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands; 8–10 and 15–16 October 2016 Proceedings, Part III 14. pp. 47–54.
- Jin, M.; Wen, Q.; Liang, Y.; Zhang, C.; Xue, S.; Wang, X.; Zhang, J.; Wang, Y.; Chen, H.; Li, X. Large models for time series and spatio-temporal data: A survey and outlook. arXiv 2023, arXiv:2310.10196. [Google Scholar]
- Li, Y.; Yuan, Y. Convergence analysis of two-layer neural networks with relu activation. Adv. Neural Inf. Process. Syst. 2017, 30, 598–608. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
Variable or Feature | Unit | Description |
---|---|---|
Power_Avg | kW | Generated power |
Wind Speed | m/s | Wind speed |
Gen_RPM | RPM | Generator speed |
Wind Direction | degree (°) | Wind direction |
Nacel_Direct | degree (°) | Nacelle direction |
Blade_Pitch | degree (°) | Blade pitch angle |
Yaw_Error | degree (°) | Yaw error |
Temper_Nac | Celsius (°C) | Nacelle temperature |
Temper_Amb | Celsius (°C) | Ambient temperature |
Temper_Gen | Celsius (°C) | Generator bearing temperature |
Temper_Gear | Celsius (°C) | Gear bearing temperature |
Oper_State | - | Flagged for normal operating condition |
Variables or Features | Unit | Description |
---|---|---|
Temperature | Celsius (°C) | Air temperature from the weather database |
Relative Humidity | % | Relative humidity from the weather database |
Region 2 of Power Curve | Region 3 of Power Curve |
---|---|
Temperature < 0 °C | Temperature < 0 °C |
Relative Humidity > 85% | Relative Humidity > 85% |
Actual Power < 85% × Power Curve | Actual Power < 85% × Rated Power |
Feature | Fisher Distance |
---|---|
Power_Avg | |
Temp_Gear | |
Gen_RPM | |
Relative Humidity (local weather station) | |
Wind Speed | |
Temp_Gen | |
Temper_Nac | |
Blade_Pitch | |
Temperature (local weather station) | |
Wind Direction | |
Nacel_Direct | |
Temper_Amb | |
Yaw_Error |
Number of Features in Descending Order of Their Fisher Distance | Prediction Accuracy (%) |
---|---|
1 | 74.70 |
2 | 74.69 |
3 | 74.77 |
4 | 76.47 |
5 | 76.86 |
6 | 77.24 |
7 | 77.24 |
8 | 77.61 |
9 | 77.97 |
10 | 78.85 |
11 | 79.36 |
12 | 80.07 |
13 | 79.92 |
Parameters | Value or Setting |
---|---|
Optimizer | Adam |
Loss Function | Binary Cross-Entropy |
Epoch | 10 |
Learning rate | 0.001 |
Batch size | 8 |
Kernel size | 3 |
Dropout Probability | 0.2 |
Predicted Ice | Predicted Normal | |
---|---|---|
Actual ice | TP | FN |
Actual normal | FP | TN |
Metric | Definition |
---|---|
True Positive (TP) | Portion of the samples the model correctly predicted as positive cases (“ice”). |
True Negative (TN) | Portion of the samples the model correctly predicted as negative cases (“normal”). |
False Positive (FP) | Portion of the samples the model incorrectly predicted as positive cases (“ice”) when they were actually negative cases (“normal”). |
False Negative (FN) | Portion of the samples the model incorrectly predicted as negative cases (“normal”) when they were actually positive cases (“ice”). |
Prediction Horizon (Hours) | Average Prediction Accuracy (%) | Average Score |
---|---|---|
0–12 | 81.8 | 0.60 |
12–24 | 81.4 | 0.59 |
24–36 | 73.7 | 0.48 |
36–48 | 73.4 | 0.45 |
Predicted Ice | Predicted Normal | |
---|---|---|
Actual ice | 2185 | 674 |
Actual normal | 1536 | 12,863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kehtarnavaz, N.; Rotea, M.; Dasari, T. Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network. Energies 2024, 17, 2175. https://doi.org/10.3390/en17092175
Zhang Y, Kehtarnavaz N, Rotea M, Dasari T. Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network. Energies. 2024; 17(9):2175. https://doi.org/10.3390/en17092175
Chicago/Turabian StyleZhang, Yujie, Nasser Kehtarnavaz, Mario Rotea, and Teja Dasari. 2024. "Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network" Energies 17, no. 9: 2175. https://doi.org/10.3390/en17092175
APA StyleZhang, Y., Kehtarnavaz, N., Rotea, M., & Dasari, T. (2024). Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network. Energies, 17(9), 2175. https://doi.org/10.3390/en17092175