Buried Interface Smoothing Boosts the Mechanical Durability and Efficiency of Flexible Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Perovskite Precursor Solution
2.3. Fabrication of F-PSCs
2.4. Device Characterizations
3. Results and Discussion
3.1. Interfacial Morphology and Electrical Properties of SnO2
3.2. Morphology and Crystallinity of Flexible Perovskite Films
3.3. Optical and Electrical Properties of Flexible Perovskite Film
3.4. Flexible Solar Cells and Device Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ALee, G.; Kim, M.C.; Choi, Y.W.; Ahn, N.; Jang, J.; Yoon, J.; Kim, S.M.; Lee, J.G.; Kang, D.; Jung, H.S.; et al. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source. Energy Environ. Sci. 2019, 12, 3182–3191. [Google Scholar]
- Gao, Y.; Huang, K.; Long, C.; Ding, Y.; Chang, J.; Zhang, D.; Etgar, L.; Liu, M.; Zhang, J.; Yang, J. Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Lett. 2022, 7, 1412–1445. [Google Scholar] [CrossRef]
- Huang, Z.; Li, L.; Wu, T.; Xue, T.; Sun, W.; Pan, Q.; Wang, H.; Xie, H.; Chi, J.; Han, T.; et al. Wearable perovskite solar cells by aligned liquid crystal elastomers. Nat. Commun. 2023, 14, 1204. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, G.; Xi, J.; Shen, Y.; Wu, X.; Tang, X.; Ding, J.; Yang, H.; Cheng, Q.; Chen, Z.; et al. In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 2023, 7, 398–415. [Google Scholar] [CrossRef]
- Han, T.-H.; Zhao, Y.; Yoon, J.; Woo, J.Y.; Cho, E.-H.; Kim, W.D.; Lee, C.; Lee, J.-W.; Choi, J.-M.; Han, J.; et al. Spontaneous Hybrid Cross-Linked Network Induced by Multifunctional Copolymer toward Mechanically Resilient Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2207142. [Google Scholar] [CrossRef]
- Li, M.; Zuo, W.-W.; Ricciardulli, A.G.; Yang, Y.-G.; Liu, Y.-H.; Wang, Q.; Wang, K.-L.; Li, G.-X.; Saliba, M.; Di Girolamo, D.; et al. Embedded Nickel-Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Photovoltaics: Toward a Portable Mobile Energy Source. Adv. Mater. 2020, 32, 2003422. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Su, Z.H.; Lou, Y.H.; Yu, Y.J.; Wang, K.L.; Liu, G.L.; Shi, Y.R.; Chen, J.; Cao, J.J.; Zhang, L.; et al. Full-Dimensional Grain Boundary Stress Release for Flexible Perovskite Indoor Photovoltaics. Adv. Mater. 2022, 34, 2200320. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, J.; Cen, H.; Wu, Z.; Dong, H.; Xi, J. Perspectives for the conversion of perovskite indoor photovoltaics into IoT reality. Nanoscale 2023, 15, 5167–5180. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, T.; Cai, W.; Wang, Y.; Chen, X.; Wang, S.; Huang, W.; Du, Y.; Wu, N.; Wang, Z.; et al. Flexible Indoor Perovskite Solar Cells by In Situ Bottom-Up Crystallization Modulation and Interfacial Passivation. Adv. Mater. 2024, 36, 2311562. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cai, W.; Niu, T.; Wang, H.; Liu, C.; Zhang, Z.; Du, Y.; Wang, S.; Cao, Y.; Liu, P.; et al. Crystallization control via ligand–perovskite coordination for high-performance flexible perovskite solar cells. Energy Environ. Sci. 2024, 17, 6256–6267. [Google Scholar] [CrossRef]
- Tong, X.; Xie, L.; Li, J.; Pu, Z.; Du, S.; Yang, M.; Gao, Y.; He, M.; Wu, S.; Mai, Y.; et al. Large Orientation Angle Buried Substrate Enables Efficient Flexible Perovskite Solar Cells and Modules. Adv. Mater. 2024, 36, 2407032. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wang, Y.; Lai, Y.; Cai, Z.; Tao, M.; Wang, Y.; Li, M.; Dong, X.; Song, Y. Thermally driven self-healing efficient flexible perovskite solar cells. Nano Energy 2022, 100, 107523. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Qian, J.; Liang, Z.; Wu, C.; Wang, K.; Liu, S.; Yang, D. Thermal Radiation Annealing for Overcoming Processing Temperature Limitation of Flexible Perovskite Solar Cells. Adv. Mater. 2024, 36, 2401236. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xu, G.; Yang, F.; Chen, W.; Yang, H.; Shen, Y.; Wu, Y.; Chen, H.; Xi, J.; Tang, X.; et al. Realizing 23.9% Flexible Perovskite Solar Cells via Alleviating the Residual Strain Induced by Delayed Heat Transfer. ACS Energy Lett. 2023, 8, 3750–3759. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Y.; Liu, C.; Cao, R.; Han, B.; Xie, L.; Tian, R.; Lu, X.; Song, Z.; Li, J.; et al. Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 2024, 8, 1120–1141. [Google Scholar] [CrossRef]
- Yang, L.; Feng, J.; Liu, Z.; Duan, Y.; Zhan, S.; Yang, S.; He, K.; Li, Y.; Zhou, Y.; Yuan, N.; et al. Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation. Adv. Mater. 2022, 34, 2201681. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jia, C.; Wan, Z.; Xue, J.; Cao, J.; Zhang, M.; Li, C.; Shen, J.; Zhang, C.; Li, Z. Hyperbranched polymer functionalized flexible perovskite solar cells with mechanical robustness and reduced lead leakage. Nat Commun. 2023, 14, 6451. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Yang, T.; Liu, C.; Wang, Y.; Wang, S.; Du, Y.; Wu, N.; Huang, W.; Wang, S.; Wang, Z.; et al. Interfacial Engineering for Efficient Low-Temperature Flexible Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202309398. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhang, L.; She, S.; Wu, J.; Zhou, X.; Li, X.; Wang, D.; Miao, J.; Mi, G.; Chen, H.; et al. Electron Transporting Bilayer of SnO2 and TiO2 Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells. Sol. RRL 2020, 4, 1900331. [Google Scholar] [CrossRef]
- Xu, Z.; Lou, Q.; Chen, J.; Xu, X.; Luo, S.; Nie, Z.; Zhang, S.; Zhou, H. Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 34377–34385. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zheng, G.; Gao, F.; Wang, X.; Zhan, C.; Gao, X.; Zhao, Q. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 2023, 17, 856–864. [Google Scholar] [CrossRef]
- Kiy, M.; Losio, P.; Biaggio, I.; Koehler, M.; Tapponnier, A.; Günter, P. Observation of the Mott–Gurney law in tris (8-hydroxyquinoline) aluminum films. Appl. Phys. Lett. 2002, 80, 1198–1200. [Google Scholar] [CrossRef]
- Wu, M.; Duan, Y.; Yang, L.; You, P.; Li, Z.; Wang, J.; Zhou, H.; Yang, S.; Xu, D.; Zou, H.; et al. Multifunctional Small Molecule as Buried Interface Passivator for Efficient Planar Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2300128. [Google Scholar] [CrossRef]
- Ye, J.; Li, Y.; Medjahed, A.A.; Pouget, S.; Aldakov, D.; Liu, Y.; Reiss, P. Doped Bilayer Tin(IV) Oxide Electron Transport Layer for High Open-Circuit Voltage Planar Perovskite Solar Cells with Reduced Hysteresis. Small 2021, 17, 2005671. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Zheng, W.; Jiang, Y.; Chen, S.; Li, D.; Ma, C.; Wang, X.; Huang, W.; Zhang, X.; Liu, H.; et al. WO3–WS2 Vertical Bilayer Heterostructures with High Photoluminescence Quantum Yield. J. Am. Chem. Soc. 2019, 141, 11754–11758. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.; Zhou, J.; Zhang, J.; Zhang, X.; Leng, X.; Wang, P.; Chen, M.; Zhang, D.; Zhao, K.; et al. Fine Multi-Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Post-Annealing. Adv. Mater. 2019, 31, 1903889. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Cui, J.; Chen, M.; Zhang, M.; Han, Y.; Qian, F.; Zhao, H.; Yang, S.; Yang, Z.; Bian, H.; et al. Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2005776. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.; Xu, G.; Xue, R.; Wang, S.; Li, Y.; Li, Y. Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells. Joule 2019, 3, 191–204. [Google Scholar] [CrossRef]
- Gu, X.; Xiang, W.; Tian, Q.; Liu, S. Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 23164–23170. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, M.; Yang, L.; Guo, K.; Duan, Y.; Li, Y.; He, K.; Xing, Y.; Zhang, Z.; Zhou, H.; et al. 24.64%-Efficiency MA-Free Perovskite Solar Cell with VOC of 1.19 V Enabled by a Hinge-Type Fluorine-Rich Complex. Adv. Funct. Mater. 2023, 33, 2212606. [Google Scholar] [CrossRef]
- Chang, X.; Fang, J.; Fan, Y.; Luo, T.; Su, H.; Zhang, Y.; Lu, J.; Tsetseris, L.; Anthopoulos, T.D.; Liu, S.; et al. Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy. Adv. Mater. 2020, 32, 2001243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, E.; Gong, Y.; Dong, Y.; Dai, W.; Liu, C.; Yang, T.; Wu, N.; Yang, Y.; Zhang, Z.; Tian, C.; et al. Buried Interface Smoothing Boosts the Mechanical Durability and Efficiency of Flexible Perovskite Solar Cells. Energies 2025, 18, 174. https://doi.org/10.3390/en18010174
Zhao E, Gong Y, Dong Y, Dai W, Liu C, Yang T, Wu N, Yang Y, Zhang Z, Tian C, et al. Buried Interface Smoothing Boosts the Mechanical Durability and Efficiency of Flexible Perovskite Solar Cells. Energies. 2025; 18(1):174. https://doi.org/10.3390/en18010174
Chicago/Turabian StyleZhao, Erxin, Yongshuai Gong, Yixin Dong, Wanlei Dai, Chou Liu, Tinghuan Yang, Nan Wu, Ye Yang, Zheng Zhang, Chenqing Tian, and et al. 2025. "Buried Interface Smoothing Boosts the Mechanical Durability and Efficiency of Flexible Perovskite Solar Cells" Energies 18, no. 1: 174. https://doi.org/10.3390/en18010174
APA StyleZhao, E., Gong, Y., Dong, Y., Dai, W., Liu, C., Yang, T., Wu, N., Yang, Y., Zhang, Z., Tian, C., Yan, B., Liu, D., Zhang, L., & Niu, T. (2025). Buried Interface Smoothing Boosts the Mechanical Durability and Efficiency of Flexible Perovskite Solar Cells. Energies, 18(1), 174. https://doi.org/10.3390/en18010174