Comprehensive Overview of the Effective Thermal Conductivity for Hydride Materials: Experimental and Modeling Approaches
Abstract
:1. Introduction
2. On the Overview of the Methods Applied to Measure Thermal Conductivity
- →
- Time required for the measurements;
- →
- Possibility to measure in a hydrogen atmosphere;
- →
- Possible temperature and pressure range;
- →
- Type of sample;
- →
- Amount of sample;
- →
- Commercial availability.
2.1. Steady-State Methods
2.1.1. Axial Heat Flow
2.1.2. Radial Heat Flow
2.2. Transient Methods
2.2.1. Hot-Wire Method
2.2.2. Laser-Flash Method
3. Development of Models for Effective Thermal Conductivity
3.1. Description of the Models and Parameters to Calculate the ETC (keff)
3.1.1. Maxwell Model (1873)
3.1.2. Yagi and Kunii Model (1957)
3.1.3. Zehner–Schlünder Model (1970)
3.1.4. Zehner–Bauer–Schlünder Model (1978)
3.1.5. Hayashi Model (1987)
- Conductive and radiative heat transfer in the gaseous phase;
- Conductive and radiative heat transfer in series through the gas and the solid in the biphasic region;
- Conductive heat transfer through the contact surface of solid particles.
3.1.6. Sun and Deng Model (1990)
3.1.7. Extended Zehner–Bauer–Schlünder Model (1994)
3.1.8. Modified Zehner–Schlünder: Area-Contact Model (1994)
3.1.9. Modified Zehner–Schlünder: Phase-Symmetry Model (1994)
3.1.10. Raghavan–Martin Model (1995)
3.1.11. Improved Area-Contact Model (2014)
3.1.12. Abdin–Webb–Gray Model (2018)
3.1.13. Heat Transfer Concentrating Model (2023)
3.2. On the Thermal Conductivity of the Solid
4. Effect of the Pressure, Temperature, and Composition on the ETC
- The ks, kg, ε, and l expressions given by the authors of every keff model are used;
- If the authors did not include any model for ks, a constant value is used for this parameter;
- If no information or model for kg is given, as it can be considered readily available and generally acceptable, it is calculated through data from RefProp v.10.0 (which is available from the free Mini-RefProp v.10.0 too) [168], where a dependence on P and T is present;
- If the authors did not include any model for ε, a constant value is used for this parameter;
- If no information on l is given, it is calculated through Equation (134);
- To analyze the influence of the composition on keff in the improved area-contact model, X, through R, is treated as a variable and not as a parameter.
- 3.1.1 Maxwell model [42]: M;
- 3.1.2 Yagi and Kunii model [92]: YK;
- 3.1.3 Zehner–Schlünder model [44]: ZS;
- 3.1.5 Hayashi model [43]: H;
- 3.1.7 Extended Zehner–Bauer–Schlünder model [95]: EZBS’
- 3.1.8 Area-contact model [45]: AC;
- 3.1.9 Phase-symmetry model [45]: PS;
- 3.1.10 Raghavan–Martin model [49]: RM;
- 3.1.11 Improved area-contact model [50]: IAC;
- 3.1.12 Abdin–Webb–Gray [102]: AWG;
- 3.1.13 Heat transfer concentrating model [91]: HTC.
4.1. Effect of the Pressure on the ETC
4.2. Effect of the Concentration on the ETC
4.3. Effect of the Temperature on the ETC
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
List of Abbreviations | |
ABS | Absorption |
Abs. | Hydrogenation |
DES | Desorption |
Des. | Dehydrogenation |
ETC | Effective thermal conductivity |
GHG | Greenhouse gas |
HTC | Heat transfer concentration model |
LFM | Laser-flash method |
LGHV | Low gravimetric heating value |
LVHV | Low volumetric heating value of hydrogen |
MFP | Mean free path |
MHB | Metal hydride bed |
MHs | Metal hydrides |
MTPS | Modified transient plane source |
PCIs | Pressure–Composition Isotherms |
RT | Room temperature |
TLS | Transient line source |
TPS | Transient plane source |
List of Symbols | |
a | Accommodation coefficient |
A | Cross-sectional area |
A0 | Fitting parameter |
Aconst | Proportionality constant |
a1 | Operator to compact equations |
A1 | Fitting parameter |
a2 | Operator to compact equations |
a3 | Operator to compact equations |
Asf | Solid–fluid interface |
b | Accommodation coefficient |
B | Shape factor |
Bbulk | Bulk modulus |
B0 | Initial shape factor |
b1 | Operator to compact equations |
b2 | Operator to compact equations |
Ba | Shape factor after the expansion |
bg | Constant depending on the gas |
C | Form factor |
c1 | Operator to compact equations |
C1 | Vickers microhardness coefficient 1 |
c2 | Operator to compact equations |
C2 | Vickers microhardness coefficient 2 |
cp | Heat capacity at constant pressure |
cv | Heat capacity at constant volume |
cve | Volume-specific heat capacity of the electron gas |
cvp | Volume-specific heat capacity of the phonon gas |
d | Particle diameter |
dkin | Kinetic diameter of hydrogen |
D | Size of the boundary of the solid |
d0 | Initial particle diameter |
dc | Contact area diameter |
de | Equivalent diameter for the void space |
dv | Mean indentation diagonal depth |
e | Elementary charge |
e | Emissivity factor of the solid surface |
E | Young’s modulus |
E′ | Effective Young’s modulus |
F | Force between two particles |
F0 | Force between two particles for constant area during expansion |
fF | Force factor |
Fn | Normal contact force |
fve | Maximum expansion factor of the particles |
FX | Force for the expansion of a fully restrained particle |
G | Effective gas coefficient |
G | Reciprocal lattice vector |
h | Dimensionless height |
Hc | Contact microhardness |
hMaxwell | Value of h taking to the Maxwell result |
hrs | Radiative heat transfer coefficients for solid-to-solid |
hrv | Radiative heat transfer coefficients for void-to-void |
hsc | Height of the spherical cap |
hsh | Height of the sample holder |
H | Hydrogen Atom |
Hv | Vickers microhardness |
k | Thermal conductivity |
kB | Boltzmann constant |
kbp | Thermal conductivity of the biphasic region in the model 3.1.4 |
k′ | Thermal conductivity of the biphasic region in the model 3.1.7 |
ke | Heat conduction in solids owing to electrons |
ke0 | Effective thermal conductivity at zero pressure |
keff | Effective thermal conductivity |
kg | Gas (hydrogen) thermal conductivity |
kg,Eucken | Gas (hydrogen) thermal conductivity with the Eucken Equation |
kg,ref | Gas (hydrogen) thermal conductivity at reference pressure |
kg1 | Gas (hydrogen) thermal conductivity in the gas domain |
kg2 | Gas (hydrogen) thermal conductivity in the biphasic domain |
ki | Heat conduction channels i |
kp | Heat conduction in solids owing to phonons |
Kn | Knudsen number |
Kn* | Modified Knudsen number |
ks | Solid phase (bulk) thermal conductivity |
ks* | Solid phase thermal conductivity for the metal/alloy to hydride transition |
kref | Thermal Conductivity of Reference Materials |
L | Thickness |
l | Mean free path |
lp | Effective length between the centers of two adjacent particles |
ls | Effective length of the solid particles relating to the heat conduction |
lv | Effective thickness of fluid film adjacent to the contact surface of two solid particles |
m | Exponential fitting parameter |
me | Electron mass |
M | Gas parameter |
Mav | Average atomic mass |
Me | Metal |
MHs | Metal hydrides |
MexHy | Metal Hydride Compound |
MW | Molecular weight |
MWH2 | Molecular weight of molecular hydrogen |
N | Particle coordination number |
NA | Avogadro constant |
Natoms | Number of atoms in the sample |
Natoms-cell | Number of atoms in the unit cell |
Ni | Concentration of the impurity in the metal |
Nur | Nusselt number |
Nur* | Modified Nusselt number |
nd | Defects concentration |
ne | Electrons concentration |
np | Phonons concentration |
P | Pressure |
P0 | Hydrogen mean free path reference pressure |
Peq | Equilibrium pressure |
Pload,max | Maximum contact load pressure |
Pr | Prandtl number |
q | Heat flow |
Q | Operator to compact equations |
Q | Heat flux perpendicular to an area in the solid |
R | Reacted fraction |
rn | Radial position of the thermocouple, with n = 1, 2, 3, …, n. |
r | Particle radius |
r0 | Initial particle radius |
rc | Contact area radius |
Rc | Thermal contact resistance |
rc,0 | Initial contact area radius |
Rg | Micro-gap thermal resistance |
RG | Macro-gap thermal resistance |
Rgas | Gas constant |
RL | Macro-contact thermal resistance |
Rmax | Maximum reacted fraction |
RP | Reacted fraction at the beginning of the plateau |
Rs | Micro-contact thermal resistance |
T | Temperature |
Teq | Equilibrium temperature |
∇T | Temperature gradient |
tn | Times, n = 1 (initial) and 2 (final) |
t0.5 | Time after reaching 50% of the total temperature increase |
V | Volume of the metal |
V0 | Minimum MH bed volume |
V1 | Maximum MH bed volume |
V2 | MH bed volume at the end of the cycle |
vF | Fermi velocity of the conducting electrons at the Fermi surface |
Vgas,all | Total gas volume in the characteristic cubic unit |
Vgas,cylinder | Gas volume of the cylinder region |
Vgas,eff | Effective gas film region |
vp | Average group velocity of the phonons |
vs | Speed of sound inside the solid |
Vs,0 | Initial volume of the solid particle |
wt% | Weight percentage |
x | Distance |
X | Hydrogen to metal concentration (wt%) |
Xat | Hydrogen to metal atomic ratio |
Xeq | Equilibrium hydrogen concentration |
Xmax | Maximum hydrogen to metal concentration |
Y | Operator to compact equations |
Z | Operator accounting for geometric distortions |
Zn | Position of the thermocouple |
List of Greek Symbols | |
α | Deformed factor |
α0 | Initial deformed factor |
αa | Deformed factor after the expansion |
αd | Thermal diffusivity |
αss | Metal solid solution phase |
αT1 | Thermal accommodation coefficient 1 |
αT2 | Thermal accommodation coefficient 2 |
β | Operator to compact equations |
β′ | Factor of the angle between actual and parallel heat flow directions |
βMH | Metal hydride phase |
∈F | Fermi energy |
Γ | Specific heat ratio |
γGrü | Grüneisen parameter |
γSommerfeld | Sommerfeld constant |
δ | Fractional area associated with the conductive heat transfer through particles |
δv | Average atomic volume |
ΔHr | Reaction Enthalpy |
ΔM | Difference in mass between the two isotopes |
ΔSr | Reaction Entropy |
ΔV | Volume variation per hydrogen atom |
ΔVs | Relative expansion of the solid particle |
ε | Porosity |
ε0 | Initial porosity |
η2 | Heat transferred ratio—“cylinder region”: “characteristic cubic unit” |
η3 | Gas volume ratio—Vgas,eff:Vgas,all |
θ0 | Contact angle between solid particles at zero pressure |
θ | Contact angle between solid particles |
θD | Debye temperature |
Κ | Wave-vector of the phonons |
μ | Dynamic viscosity |
ν | Poisson’s ratio |
ρ | Density |
ρg | Gas density |
ρs | Solid material density |
σ | Stefan–Boltzmann constant |
σelectrical | Electrical conductivity |
σe-i | Cross-section for the scattering of the impurity |
σd | Scattering cross-section for phonons |
σR | Surface roughness |
τ | Angle from the center of the spherical particle to the annular cylinder |
τe | Relaxation time of an electron |
τe-e | Relaxation time of the electron–electron scattering processes |
τe-i | Relaxation time of the electron-impurity scattering |
τe-p | Relaxation time of electrons scattered by phonons at low temperatures |
τp | Relaxation time of a phonon |
τU | Relaxation time for the U-process |
τp-B | Relaxation time for the phonon-boundary scattering |
τp-d | Relaxation times for the lattice imperfections of crystals |
τp-is | Relaxation time for the phonons mean free path |
τp | Relaxation times of all phononic scattering processes |
ΔT | Temperature difference |
ϕ | Flattening factor |
ϕ* | Dimensionless length |
ϕ1* | Support parameter for the dimensionless length |
ϕ2* | Support parameter for the dimensionless length |
ϕabs | Expansion ratio |
ϕdes | Contraction ratio |
ϕp | Particle expansion ratio |
ϕs | Metal hydride bed expansion ratio |
ω | Angle of the cylinder region |
ωf | Angular frequency of the phonons |
∇ | Nabla, vector differential operator |
Ʌ | Characteristic length |
Λp | Particle mean free path between two collision events for phonons |
Λe | Particle mean free path between two collision events of electrons |
References
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, S.H.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; Perez, R.; et al. Framing and Context. Glob. Warm. 2018, 1, 49–56. [Google Scholar]
- Lambert, M.; Hawkes, A.; Patonia, A.; Poudineh, R.; Moore, B.; Isaac, T.; Lewis, T.; Schöffel, M.; Barnes, A.; Heather, P.; et al. The Role of Hydrogen in the Energy Transition; The Oxford Institute for Energy Studies: Oxford, UK, 2021. [Google Scholar]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, N.; Hillmansen, S.; Roberts, C.; Yan, Y. Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review. Energies 2022, 15, 6467. [Google Scholar] [CrossRef]
- Yanxing, Z.; Maoqiong, G.; Yuan, Z.; Xueqiang, D.; Jun, S. Thermodynamics Analysis of Hydrogen Storage Based on Compwrittenressed Gaseous Hydrogen, Liquid Hydrogen and Cryo-Compressed Hydrogen. Int. J. Hydrogen Energy 2019, 44, 16833–16840. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of High Pressure Gaseous Hydrogen Storage Technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Peng, J.-K.; Hua, T.Q. Cryo-Compressed Hydrogen Storage. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 119–145. [Google Scholar]
- Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021, 14, 5917. [Google Scholar] [CrossRef]
- Aceves, S.M.; Petitpas, G.; Espinosa-Loza, F.; Matthews, M.J.; Ledesma-Orozco, E. Safe, Long Range, Inexpensive and Rapidly Refuelable Hydrogen Vehicles with Cryogenic Pressure Vessels. Int. J. Hydrogen Energy 2013, 38, 2480–2489. [Google Scholar] [CrossRef]
- Clematis, D.; Bellotti, D.; Rivarolo, M.; Magistri, L.; Barbucci, A. Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis. Energies 2023, 16, 6035. [Google Scholar] [CrossRef]
- Cetinkaya, S.A.; Disli, T.; Soyturk, G.; Kizilkan, O.; Colpan, C.O. A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers. Energies 2022, 16, 341. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The Survey of Key Technologies in Hydrogen Energy Storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Wijayanta, A.T.; Oda, T.; Purnomo, C.W.; Kashiwagi, T.; Aziz, M. Liquid Hydrogen, Methylcyclohexane, and Ammonia as Potential Hydrogen Storage: Comparison Review. Int. J. Hydrogen Energy 2019, 44, 15026–15044. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of Hydrogen Storage Techniques for on Board Vehicle Applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Prachi, R.P.; Mahesh, M.W.; Aneesh, C.G. A Review on Solid State Hydrogen Storage Material. Adv. Energy Power 2016, 4, 11–22. [Google Scholar] [CrossRef]
- Liu, Y.; Chabane, D.; Elkedim, O. Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review. Energies 2021, 14, 5758. [Google Scholar] [CrossRef]
- Pasquini, L.; Sakaki, K.; Akiba, E.; Allendorf, M.D.; Alvares, E.; Ares, J.R.; Babai, D.; Baricco, M.; Bellosta von Colbe, J.; Bereznitsky, M.; et al. Magnesium- and Intermetallic Alloys-Based Hydrides for Energy Storage: Modelling, Synthesis and Properties. Progress. Energy 2022, 4, 032007. [Google Scholar] [CrossRef]
- von Colbe, J.B.; Ares, J.-R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; et al. Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- Puszkiel, J.; von Colbe, J.M.B.; Jepsen, J.; Mitrokhin, S.V.; Movlaev, E.; Verbetsky, V.; Klassen, T. Designing an Ab2-Type Alloy (TIZr-CrMNMO) for the Hybrid Hydrogen Storage Concept. Energies 2020, 13, 2751. [Google Scholar] [CrossRef]
- Dreistadt, D.M.; Puszkiel, J.; Bellosta von Colbe, J.M.; Capurso, G.; Steinebach, G.; Meilinger, S.; Le, T.-T.; Guarneros, M.C.; Klassen, T.; Jepsen, J. A Novel Emergency Gas-to-Power System Based on an Efficient and Long-Lasting Solid-State Hydride Storage System: Modeling and Experimental Validation. Energies 2022, 15, 844. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Barale, J.; Corno, M.; Sciullo, A.; Baricco, M.; Rizzi, P. Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective. Energies 2021, 14, 6158. [Google Scholar] [CrossRef]
- Scarpati, G.; Frasci, E.; Di Ilio, G.; Jannelli, E. A Comprehensive Review on Metal Hydrides-Based Hydrogen Storage Systems for Mobile Applications. J. Energy Storage 2024, 102, 113934. [Google Scholar] [CrossRef]
- Møller, K.; Sheppard, D.; Ravnsbæk, D.; Buckley, C.; Akiba, E.; Li, H.-W.; Jensen, T. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage. Energies 2017, 10, 1645. [Google Scholar] [CrossRef]
- Ge, Y.T.; Lang, P.Y. Alloy Selections in High-Temperature Metal Hydride Heat Pump Systems for Industrial Waste Heat Recovery. Energy Rep. 2022, 8, 3649–3660. [Google Scholar] [CrossRef]
- Guo, F.; Jain, A.; Miyaoka, H.; Kojima, Y.; Ichikawa, T. Critical Temperature and Pressure Conditions of Degradation during Thermochemical Hydrogen Compression: A Case Study of V-Based Hydrogen Storage Alloy. Energies 2020, 13, 2324. [Google Scholar] [CrossRef]
- Ham, S.; Kang, S.; Kim, K.J. A Numerical Study for Performance Prediction of a Metal Hydride Thermal Energy Conversion System Elaborating the Superadiabatic Condition. Energies 2020, 13, 3095. [Google Scholar] [CrossRef]
- Mohammadshahi, S.S.; Gray, E.M.A.; Webb, C.J. A Review of Mathematical Modelling of Metal-Hydride Systems for Hydrogen Storage Applications. Int. J. Hydrogen Energy 2016, 41, 3470–3484. [Google Scholar] [CrossRef]
- Bohmhammel, K.; Wolf, U.; Wolf, G.; Königsberger, E. Thermodynamic Optimization of the System Magnesium–Hydrogen. Thermochim. Acta 1999, 337, 195–199. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.-F.; Ares-Fernández, J.-R. Hydrogen in Magnesium: New Perspectives toward Functional Stores. Energy Environ. Sci. 2010, 3, 526. [Google Scholar] [CrossRef]
- Sandrock, G. A Panoramic Overview of Hydrogen Storage Alloys from a Gas Reaction Point of View. J. Alloys Compd. 1999, 293–295, 877–888. [Google Scholar] [CrossRef]
- Gray, E.M.A. Alloy Selection for Multistage Metal-Hydride Hydrogen Compressors: A Thermodynamic Model. Int. J. Hydrogen Energy 2021, 46, 15702–15715. [Google Scholar] [CrossRef]
- Schwarz, R.B.; Khachaturyan, A.G. Thermodynamics of Open Two-Phase Systems with Coherent Interfaces. Phys. Rev. Lett. 1995, 74, 2523–2526. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, Z.; Zhang, L.; Wang, S.; Jiang, L. Measurement and the Improvement of Effective Thermal Conductivity for a Metal Hydride Bed-a Review. RSC Adv. 2022, 12, 25722–25743. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, Y.; Huang, Z.; Yang, F.; Wu, Z.; Zheng, L.; Wu, L.; Zhang, Z. Design Optimization and Sensitivity Analysis of the Radiation Mini-Channel Metal Hydride Reactor. Energy 2019, 173, 443–456. [Google Scholar] [CrossRef]
- Shafiee, S.; McCay, M.H. Different Reactor and Heat Exchanger Configurations for Metal Hydride Hydrogen Storage Systems-A Review. Int. J. Hydrogen Energy 2016, 41, 9462–9470. [Google Scholar] [CrossRef]
- Kukkapalli, V.K.; Kim, S. Optimization of Internal Cooling Fins for Metal Hydride Reactors. Energies 2016, 9, 447. [Google Scholar] [CrossRef]
- Nyamsi, S.N.; Tolj, I. The Impact of Active and Passive Thermal Management on the Energy Storage Efficiency of Metal Hydride Pairs Based Heat Storage. Energies 2021, 14, 3006. [Google Scholar] [CrossRef]
- Kukkapalli, V.K.; Kim, S.; Thomas, S.A. Thermal Management Techniques in Metal Hydrides for Hydrogen Storage Applications: A Review. Energies 2023, 16, 3444. [Google Scholar] [CrossRef]
- Gillia, O. Hydride Breathing and Its Consequence on Stresses Applied to Containers: A Review. Int. J. Hydrogen Energy 2021, 46, 35594–35640. [Google Scholar] [CrossRef]
- Warfsmann, J.; Puszkiel, J.A.; Passing, M.; Krause, P.S.; Wienken, E.; Taube, K.; Klassen, T.; Pistidda, C.; Jepsen, J. Applying Wash Coating Techniques for Swelling-Induced Stress Reduction and Thermal Improvement in Metal Hydrides. J. Alloys Compd. 2023, 950, 169814. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, Y.; Bao, Z.; Yan, D.; Zhu, Z. Methods for Measuring the Effective Thermal Conductivity of Metal Hydride Beds: A Review. Int. J. Hydrogen Energy 2020, 45, 6680–6700. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Macmillan and Co.: London, UK, 1873. [Google Scholar]
- Hayashi, S.; Kubota, K.; Masaki, H.; Shibata, Y.; Takahashi, K. Theoretical Model for the Estimation of the Effective Thermal Conductivity of a Packed Bed of Fine Particles. Chem. Eng. J. 1987, 35, 51–60. [Google Scholar] [CrossRef]
- Zehner, P.; Schlunder, E.U. Warmeleitfahigkeit von Schuttungen Bei Maßigen Temperaturen. Chem. Ing. Tech. 1970, 42, 933–941. [Google Scholar] [CrossRef]
- Hsu, C.T.; Cheng, P.; Wong, K.W. Modified Zehner-Schlunder Models for Stagnant Thermal Conductivity of Porous Media. Int. J. Heat. Mass. Transf. 1994, 37, 2751–2759. [Google Scholar] [CrossRef]
- Sun, D.-W.; Deng, S.-J. A Theoretical Model Predicting the Effective Thermal Conductivity in Powdered Metal Hydride Beds. Int. J. Hydrogen Energy 1990, 15, 331–336. [Google Scholar] [CrossRef]
- Sun, D.-W.; Deng, S.-J. Theoretical Descriptions and Experimental Measurements on the Effective Thermal Conductivity in Metal Hydride Powder Beds. J. Less Common. Metals 1990, 160, 387–395. [Google Scholar] [CrossRef]
- Ghafir, M.F.A.; Batcha, M.F.M.; Raghavan, V.R. Prediction of the Thermal Conductivity of Metal Hydrides-The Inverse Problem. Int. J. Hydrogen Energy 2009, 34, 7125–7130. [Google Scholar] [CrossRef]
- Raghavan, V.R.; Martin, H. Modelling of Two-Phase Thermal Conductivity. Chem. Eng. Process. Process Intensif. 1995, 34, 439–446. [Google Scholar] [CrossRef]
- Matsushita, M.; Monde, M.; Mitsutake, Y. Predictive Calculation of the Effective Thermal Conductivity in a Metal Hydride Packed Bed. Int. J. Hydrogen Energy 2014, 39, 9718–9725. [Google Scholar] [CrossRef]
- Yüksel, N. The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials. In Insulation Materials in Context of Sustainability; InTech: Washougal, WA, USA, 2016. [Google Scholar]
- Vieira, A.; Alberdi-Pagola, M.; Christodoulides, P.; Javed, S.; Loveridge, F.; Nguyen, F.; Cecinato, F.; Maranha, J.; Florides, G.; Prodan, I.; et al. Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications. Energies 2017, 10, 2044. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Asadi, I.; Shafigh, P.; Hassan, Z.F.A.B.; Mahyuddin, N.B. Thermal Conductivity of Concrete-A Review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Palacios, A.; Cong, L.; Navarro, M.E.; Ding, Y.; Barreneche, C. Thermal Conductivity Measurement Techniques for Characterizing Thermal Energy Storage Materials-A Review. Renew. Sustain. Energy Rev. 2019, 108, 32–52. [Google Scholar] [CrossRef]
- Arfken, G.B.; Griffing, D.F.; Kelly, D.C.; Priest, J. University Physics; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Eaton, E.E.; Olsen, C.E.; Sheinberg, H.; Steyert, W.A. Mechanically Stable Hydride Composites Designed for Rapid Cycling. Int. J. Hydrogen Energy 1981, 6, 609–623. [Google Scholar] [CrossRef]
- Xamán, J.; Esquivel-Ramon, J.; Chávez, Y.; Hernández-Pérez, I. Numerical Simulation of an Instrument to Determine the Thermal Conductivity of Conductive Solids. Mech. Ind. 2017, 18, 105. [Google Scholar] [CrossRef]
- Grössinger, R. Handbook of Materials Measurement Methods; Czichos, H., Saito, T., Smith, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-20785-6. [Google Scholar]
- Sánchez, A.R.; Klein, H.P.; Groll, M. Expanded Graphite as Heat Transfer Matrix in Metal Hydride Beds. Int. J. Hydrogen Energy 2003, 28, 515–527. [Google Scholar] [CrossRef]
- Park, C.S.; Jung, K.; Jeong, S.U.; Kang, K.S.; Lee, Y.H.; Park, Y.-S.; Park, B.H. Development of Hydrogen Storage Reactor Using Composite of Metal Hydride Materials with ENG. Int. J. Hydrogen Energy 2020, 45, 27434–27442. [Google Scholar] [CrossRef]
- Yasuda, N.; Tsuchiya, T.; Okinaka, N.; Akiyama, T. Thermal Conductivity and Cycle Characteristic of Metal Hydride Sheet Formed Using Aramid Pulp and Carbon Fiber. Int. J. Hydrogen Energy 2013, 38, 1657–1661. [Google Scholar] [CrossRef]
- Anil Kumar, E.; Prakash Maiya, M.; Srinivasa Murthy, S. Measurement and Analysis of Effective Thermal Conductivity of MmNi4.5Al0.5 Hydride Bed. Ind. Eng. Chem. Res. 2011, 50, 12990–12999. [Google Scholar] [CrossRef]
- Netzsch-Grätebau GmbH. Thermal Insulation Mateirals. Available online: https://analyzing-testing.netzsch.com/en/applications/thermal-insulation (accessed on 10 October 2024).
- Yang, Y.; Mou, X.; Zhu, Z.; Bao, Z. Measurement and Analysis of Effective Thermal Conductivity of LaNi5 and Its Hydride under Different Gas Atmospheres. Int. J. Hydrogen Energy 2021, 46, 19467–19477. [Google Scholar] [CrossRef]
- Shim, J.H.; Park, M.; Lee, Y.H.; Kim, S.; Im, Y.H.; Suh, J.Y.; Cho, Y.W. Effective Thermal Conductivity of MgH2 Compacts Containing Expanded Natural Graphite under a Hydrogen Atmosphere. Int. J. Hydrogen Energy 2014, 39, 349–355. [Google Scholar] [CrossRef]
- Kapischke, J.; Hapke, J. Measurement of the Effective Thermal Conductivity of a Metal Hydride Bed with Chemical Reaction. Exp. Therm. Fluid. Sci. 1994, 9, 337–344. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Tien, H.-C.; Chyou, S.-D.; Huang, N.-N.; Wang, S.-H. Hydrogen Absorption/Desorption in a Metal Hydride Reactor Accounting for Varied Effective Thermal Conductivity. J. Mar. Sci. Technol. 2011, 19, 168–175. [Google Scholar] [CrossRef]
- Mou, X.; Zhou, W.; Bao, Z.; Huang, W. Measurement and Theoretical Analysis of Effective Thermal Conductivity of Lanthanum Pentanickel Powder Beds for Hydrogen Storage in Different Particle Sizes and Bed Porosities. J. Clean. Prod. 2024, 468, 143098. [Google Scholar] [CrossRef]
- Madaria, Y.; Anil Kumar, E. Measurement and Augmentation of Effective Thermal Conductivity of La0.8Ce0.2Ni5 Hydride Bed. J. Alloys Compd. 2017, 691, 442–451. [Google Scholar] [CrossRef]
- C-Therm Technologies Ltd. Trident Thermal Conductivity Instrument. Available online: https://ctherm.com/thermal-conductivity-instruments/trident/ (accessed on 11 October 2024).
- Salim, S.G.R. Thermal Conductivity Measurements Using the Transient Hot-Wire Method: A Review. Meas. Sci. Technol. 2022, 33, 125022. [Google Scholar] [CrossRef]
- Sundqvist, B.; Andersson, O. Thermal Conductivity and Phase Diagrams of Some Potential Hydrogen Storage Materials Under Pressure. Int. J. Thermophys. 2009, 30, 1118–1129. [Google Scholar] [CrossRef]
- Dedrick, D.E.; Kanouff, M.P.; Replogle, B.C.; Gross, K.J. Thermal Properties Characterization of Sodium Alanates. J. Alloys Compd. 2005, 389, 299–305. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, Y.F.; Zhang, X.; Hu, J.J.; Gao, M.X.; Pan, H.G. Empowering Hydrogen Storage Performance of MgH2 by Nanoengineering and Nanocatalysis. Mater. Today Nano 2020, 9, 100064. [Google Scholar] [CrossRef]
- Zheng, Q.; Kaur, S.; Dames, C.; Prasher, R.S. Analysis and Improvement of the Hot Disk Transient Plane Source Method for Low Thermal Conductivity Materials. Int. J. Heat. Mass. Transf. 2020, 151, 119331. [Google Scholar] [CrossRef]
- Jepsen, J.; Milanese, C.; Puszkiel, J.; Girella, A.; Schiavo, B.; Lozano, G.A.; Capurso, G.; von Colbe, J.M.B.; Marini, A.; Kabelac, S.; et al. Fundamental Material Properties of the 2LiBH4-MgH2 Reactive Hydride Composite for Hydrogen Storage: (II) Kinetic Properties. Energies 2018, 11, 1170. [Google Scholar] [CrossRef]
- Albert, R.; Wagner, C.; Urbanczyk, R.; Felderhoff, M. Cycle Stability of the Effective Thermal Conductivity of Nickel-Activated Magnesium Hydride Powder under Operating Conditions. Energy Technol. 2020, 8, 2000356. [Google Scholar] [CrossRef]
- Jensen, E.H.; Lombardo, L.; Girella, A.; Guzik, M.N.; Züttel, A.; Milanese, C.; Whitfield, P.; Noréus, D.; Sartori, S. The Effect of Y Content on Structural and Sorption Properties of A2B7-Type Phase in the La–Y–Ni–Al–Mn System. Molecules 2023, 28, 3749. [Google Scholar] [CrossRef]
- Pentimalli, M.; Imperi, E.; Zaccagnini, A.; Padella, F. Nanostructured Metal Hydride-Polymer Composite as Fixed Bed for Sorption Technologies. Advantages of an Innovative Combined Approach by High-Energy Ball Milling and Extrusion Techniques. Renew. Energy 2017, 110, 69–78. [Google Scholar] [CrossRef]
- Atalmis, G.; Demiralp, M.; Yelegen, N.; Kaplan, Y. The Effect of Copper Coated Metal Hydride at Different Ratios on the Reaction Kinetics. Int. J. Hydrogen Energy 2023, 48, 23067–23076. [Google Scholar] [CrossRef]
- Atalmis, G.; Toros, S.; Timurkutluk, B.; Kaplan, Y. Effect of Expanded Natural Graphite Addition and Copper Coating on Reaction Kinetics and Hydrogen Storage Characteristics of Metal Hydride Reactors. Int. J. Hydrogen Energy 2024, 53, 647–656. [Google Scholar] [CrossRef]
- Bock, R.; Hamre, B.; Onsrud, M.A.; Karoliussen, H.; Seland, F.; Burheim, O.S. The Influence of Argon, Air and Hydrogen Gas on Thermal Conductivity of Gas Diffusion Layers and Temperature Gradients in PEMFCS. ECS Trans. 2019, 92, 223–245. [Google Scholar] [CrossRef]
- Albers, A.P.F.; Restivo, T.A.G.; Pagano, L.; Baldo, J.B. Effect of Testing Conditions on the Laser Flash Thermal Diffusivity Measurements of Ceramics. Thermochim. Acta 2001, 370, 111–118. [Google Scholar] [CrossRef]
- Inseis. Die Flash Methode (Temperaturleitfähigkeit). Available online: https://www.linseis.com/methoden/flash-methode/ (accessed on 11 October 2024).
- Lauerer, A.; Lunev, A. Experimental Evidence of Gas-Mediated Heat Transfer in Porous Solids Measured by the Flash Method. Int. J. Therm. Sci. 2023, 184, 107948. [Google Scholar] [CrossRef]
- Pohlmann, C.; Röntzsch, L.; Heubner, F.; Weißgärber, T.; Kieback, B. Solid-State Hydrogen Storage in Hydralloy-Graphite Composites. J. Power Sources 2013, 231, 97–105. [Google Scholar] [CrossRef]
- Pohlmann, C.; Hutsch, T.; Röntzsch, L.; Weißgärber, T.; Kieback, B. Novel Approach for Thermal Diffusivity Measurements in Inert Atmosphere Using the Flash Method. J. Therm. Anal. Calorim. 2013, 114, 629–634. [Google Scholar] [CrossRef]
- Popilevsky, L.; Skripnyuk, V.M.; Amouyal, Y.; Rabkin, E. Tuning the Thermal Conductivity of Hydrogenated Porous Magnesium Hydride Composites with the Aid of Carbonaceous Additives. Int. J. Hydrogen Energy 2017, 42, 22395–22405. [Google Scholar] [CrossRef]
- Lunev, A.; Heymer, R. Decreasing the Uncertainty of Classical Laser Flash Analysis Using Numerical Algorithms Robust to Noise and Systematic Errors. Rev. Sci. Instrum. 2020, 91, 064902. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.S.; Rong, L.; Yang, W.W.; Yang, F.S. Effective Thermal Conductivity of Metal Hydride Particle Bed: Theoretical Model and Experimental Validation. Energy 2023, 271, 127085. [Google Scholar] [CrossRef]
- Yagi, S.; Kunii, D. Studies on Effective Thermal Conductivities in Packed Beds. AIChE J. 1957, 3, 373–381. [Google Scholar] [CrossRef]
- Nozad, I.; Carbonell, R.G.; Whitaker, S. Heat Conduction in Multiphase Systems-I. Theory and Experiment for Two-Phase Systems. Chem. Eng. Sci. 1985, 40, 843–855. [Google Scholar] [CrossRef]
- Nozad, I.; Carbonell, R.G.; Whitaker, S. Heat Conduction in Multiphase Systems-II. Experimental Method and Results for Three-Phase Systems. Chem. Eng. Sci. 1985, 40, 857–863. [Google Scholar] [CrossRef]
- Kallweit, J.; Hahne, E. Effective Thermal Conductivity of Metal Hydride Powders: Measurement and Theoretical Modelling. In Proceedings of the International Heat Transfer Conference Digital Library, Brighton, UK, 14–18 August 1994; pp. 373–378. [Google Scholar]
- Bauer, R.; Schlünder, E.U. Effective Radial Thermal Conductivity of Packings in Gas Flow. Part II: Thermal Conductivity of the Racking Fraction without Gas Flow. Int. Chem. Eng. 1978, 18, 189–204. [Google Scholar]
- Kallweit, J. Effektive Wärmeleitfähigkeit von Metallhydrid-Materialien Zur Speicherung von Wasserstoff; Universität Stuttgart: Stuttgart, Germany, 1994. [Google Scholar]
- Masamune, S.; Smith, J. Thermal Conductivity of Beds of Spherical Particles. Ind. Eng. Chem. Fundam. 1963, 2, 136–143. [Google Scholar] [CrossRef]
- Peisl, H. Wasserstoff in Metallen. Phys. Unserer Zeit 1978, 9, 37–45. [Google Scholar] [CrossRef]
- Hahne, E.; Kallweit, J. Thermal Conductivity of Metal Hydride Materials for Storage of Hydrogen: Experimental Investigation. Int. J. Hydrogen Energy 1998, 23, 107–114. [Google Scholar] [CrossRef]
- Matsushita, M.; Monde, M.; Mitsutake, Y. Experimental Formula for Estimating Porosity in a Metal Hydride Packed Bed. Int. J. Hydrogen Energy 2013, 38, 7056–7064. [Google Scholar] [CrossRef]
- Abdin, Z.; Webb, C.J.; Gray, E.M.A. One-Dimensional Metal-Hydride Tank Model and Simulation in Matlab–Simulink. Int. J. Hydrogen Energy 2018, 43, 5048–5067. [Google Scholar] [CrossRef]
- Gusarov, A.V.; Kovalev, E.P. Model of Thermal Conductivity in Powder Beds. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 024202. [Google Scholar] [CrossRef]
- Van de Lagemaat, J.; Benkstein, K.D.; Frank, A.J. Relation between Particle Coordination Number and Porosity in Nanoparticle Films: Implications to Dye-Sensitized Solar Cells. J. Phys. Chem. B 2001, 105, 12433–12436. [Google Scholar] [CrossRef]
- Bahrami, M.; Yovanovich, M.M.; Culham, J.R. Effective Thermal Conductivity of Rough Spherical Packed Beds. Int. J. Heat. Mass. Transf. 2006, 49, 3691–3701. [Google Scholar] [CrossRef]
- Song, S.; Yovanovich, M. Explicit Relative Contact Pressure Expression-Dependence upon Surface Roughness Parameters and Vickers Microhardness Coefficients. In Proceedings of the AlAA 25th Aerospace Sciences Meeting; American Institute of Aeronautics and Astronautics (AIAA), Reno, NV, USA, 24–26 March 1987. [Google Scholar]
- Valentin, L. Popov Contact Mechanics and Friction-Physical Principles and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ueoka, K.; Miyauchi, S.; Asakuma, Y.; Hirosawa, T.; Morozumi, Y.; Aoki, H.; Miura, T. An Application of a Homogenization Method to the Estimation of Effective Thermal Conductivity of a Hydrogen Storage Alloy Bed Considering Variation of Contact Conditions between Alloy Particles. Int. J. Hydrogen Energy 2007, 32, 4225–4232. [Google Scholar] [CrossRef]
- Pons, M.; Dantzer, P. Determination of Thermal Conductivity and Wall Heat Transfer Coefficient of Hydrogen Storage Materials. Int. J. Hydrogen Energy 1994, 19, 611–616. [Google Scholar] [CrossRef]
- Pons, M.; Dantzer, P.; Guilleminot, J.J. A Measurement Technique and a New Model for the Wall Heat Transfer Coefficient of a Packed Bed of (Reactive) Powder without Gas Flow. Int. J. Heat Mass Transf. 1993, 36, 2635–2646. [Google Scholar] [CrossRef]
- Asakuma, Y.; Miyauchi, S.; Yamamoto, T.; Aoki, H.; Miura, T. Homogenization Method for Effective Thermal Conductivity of Metal Hydride Bed. Int. J. Hydrogen Energy 2004, 29, 209–216. [Google Scholar] [CrossRef]
- Abyzov, A.M.; Goryunov, A.V.; Shakhov, F.M. Effective Thermal Conductivity of Disperse Materials. I. Compliance of Common Models with Experimental Data. Int. J. Heat. Mass. Transf. 2013, 67, 752–767. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Quantum Theory of the Emission and Absorption of Radiation. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1927, 114, 243–265. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung Als Eigenwertproblem. Ann. Phys. 1926, 386, 109–139. [Google Scholar] [CrossRef]
- Hund, F. Allgemeine Quantenmechanik Des Atom- Und Molekelbaues. In Quantentheorie; Bethe, H., Hund, F., Mott, N.F., Pauli, W., Rubinowicz, A., Wentzel, G., Smekal, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1933; pp. 561–694. ISBN 978-3642525650. [Google Scholar]
- Mayer, I. Perturbational Methods. In Simple Theorems, Proofs, and Derivations in Quantum Chemistry; Springer: Boston, MA, USA, 2003; pp. 69–120. ISBN 0306474093. [Google Scholar]
- Löwdin, P.-O. A Note on the Quantum-Mechanical Perturbation Theory. J. Chem. Phys. 1951, 19, 1396–1401. [Google Scholar] [CrossRef]
- Born, M. Zur Quantenmechanik Der Stoßvorgänge. Z. Für Phys. 1926, 37, 863–867. [Google Scholar] [CrossRef]
- Born, M.; Oppenheimer, R. Zur Quantentheorie Der Molekeln. Ann. Phys. 1927, 389, 457–484. [Google Scholar] [CrossRef]
- Phillips, P. Advanced Solid State Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-0-521-19490-7. [Google Scholar]
- Sutcliffe, B.T. The Born-Oppenheimer Approximation. In Methods in Computational Molecular Physics; Springer: Boston, MA, USA, 1992; pp. 19–46. [Google Scholar]
- Baer, M. Born-Oppenheimer Approach: Diabatization and Topological Matrix. In Beyond Born–Oppenheimer; Wiley: Hoboken, NJ, USA, 2006; pp. 26–57. ISBN 9780471778912. [Google Scholar]
- Baer, M. Degeneracy Points and Born-Oppenheimer Coupling Terms as Poles. In Beyond Born–Oppenheimer; Wiley: Hoboken, NJ, USA, 2006; pp. 105–138. ISBN 9780471778912. [Google Scholar]
- Baer, M. Extended Born-Oppenheimer Approximations. In Beyond Born–Oppenheimer; Wiley: Hoboken, NJ, USA, 2006; pp. 197–223. ISBN 9780471778912. [Google Scholar]
- Born, M. Das Adiabatenprinzip in Der Quantenmechanik. Z. Für Phys. 1927, 40, 167–192. [Google Scholar] [CrossRef]
- Born, M.; Fock, V. Beweis Des Adiabatensatzes. Z. Für Phys. 1928, 51, 165–180. [Google Scholar] [CrossRef]
- Ehrenfest, P. Adiabatische Invarianten Und Quantentheorie. Ann. Phys. 1916, 356, 327–352. [Google Scholar] [CrossRef]
- Ho-Kim, Q.; Pham, X.-Y. Elementary Particles and Their Interactions; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-08349-5. [Google Scholar]
- Kleinert, H. Gauge Fields in Condensed Matter; World Scientific: Singapore, 1989; ISBN 978-9971-5-0210-2. [Google Scholar]
- Fradkin, E. Field Theories of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2013; ISBN 9780521764445. [Google Scholar]
- Rammer, J. Quantum Field Theory of Non-Equilibrium States; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521874991. [Google Scholar]
- Haken, H. Quantum Field Theory of Solids, An Introduction; Elsevier Science Ltd.: North-Holland, The Netherlands, 1976. [Google Scholar]
- Lannoo, M.; Bescond, M. Non-Equilibrium Green’s Function Formalism. In Simulation of Transport in Nanodevices; Triozon, F., Dollfus, P., Eds.; Wiley-ISTE: Hoboken, NJ, USA, 2016; pp. 223–259. [Google Scholar]
- Eucken, A. Allgemeine Gesetzmäßigkeiten Für Das Wärmeleitvermögen Verschiedener Stoffarten Und Aggregatzustände. Forsch. Auf Dem Geb. Ingenieurwesens 1940, 11, 6–20. [Google Scholar] [CrossRef]
- Planck, M.; Debye, P.; Nernst, W.; Smoluchowski, M.; Sommerfeld, A.; Lorentz, H.A. Vorträge Über Die Kinetische Theorie Der Materie Und Der Elektrizität: Gehalten in Göttingen Auf Einladung Der Kommission Der Wolfskehlstiftung; Druck und Verlag von B.G. Teubner: Leipzig, Germany; Berlin, Germany, 1914. [Google Scholar]
- Born, M.; von Kármán, T. Uber Schwingungen Im Raumgittern. Phys. Z. 1912, 13, 297–309. [Google Scholar]
- Born, M. Atomtheorie Des Festen Zustandes (Dynamik Der Kristallgitter). In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1926; pp. 527–781. [Google Scholar]
- Schrödinger, E. Zur Dynamik Elastisch Gekoppelter Punktsysteme. Ann. Phys. 1914, 349, 916–934. [Google Scholar] [CrossRef]
- Ornstein, L.; Zernike, F. Bemerkung Zur Arbeit von Herrn KC Kar: Die Molekularzerstreuung Des Lichtes Beim Kritischen Zustande. Phys. Z. 1926, 27, 761–763. [Google Scholar]
- Ross, R.G.; Andersson, P.; Sundqvist, B.; Backstrom, G. Thermal Conductivity of Solids and Liquids under Pressure. Rep. Progress. Phys. 1984, 47, 1347–1402. [Google Scholar] [CrossRef]
- Debye, P. Zur Theorie Der Spezifischen Wärmen. Ann. Phys. 1912, 344, 789–839. [Google Scholar] [CrossRef]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Oxford University Press: Oxford, UK, 2001; ISBN 9780198507796. [Google Scholar]
- Klemens, P.G. Theory of the Thermal Conductivity of Amorphous Solids. In Thermal Conductivity 18; Springer: Boston, MA, USA, 1985; pp. 307–314. [Google Scholar]
- Ashcroft, N.W.; Mermin, N.D.; Wi, D. Solid State Physics; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Peierls, R. Zur Kinetischen Theorie Der Wärmeleitung in Kristallen. Ann. Phys. 1929, 395, 1055–1101. [Google Scholar] [CrossRef]
- Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113, 1046–1051. [Google Scholar] [CrossRef]
- Tritt, T.M. (Ed.) Thermal Conductivity; Springer: New York, NY, USA, 2004; ISBN 978-0-306-48327-1. [Google Scholar]
- Frankl, D.; Campisi, G.J. Boundary Scattering of Phonons in Germanium and Silicon; IOP Publishing Ltd.: Bristol, UK, 1972. [Google Scholar]
- Holland, M.G. Analysis of Lattice Thermal Conductivity. Phys. Rev. 1963, 132, 2461–2471. [Google Scholar] [CrossRef]
- Klemens, P.G. The Scattering of Low-Frequency Lattice Waves by Static Imperfections. Proc. Phys. Soc. Sect. A 1955, 68, 1113–1128. [Google Scholar] [CrossRef]
- Nabarro, F.R.N.; Peierls, R.E. The Interaction of Screw Dislocations and Sound Waves. Proc. R. Soc. Lond. A Math. Phys. Sci. 1951, 209, 278–290. [Google Scholar] [CrossRef]
- Pohl, R.O. Thermal Conductivity and Phonon Resonance Scattering. Phys. Rev. Lett. 1962, 8, 481–483. [Google Scholar] [CrossRef]
- Blatt, F.J. Matthiessen’s Rule; McGraw Hill: New York, NY, USA, 2020. [Google Scholar]
- Yang, J.; Morelli, D.T.; Meisner, G.P.; Chen, W.; Dyck, J.S.; Uher, C. Influence of Electron-Phonon Interaction on the Lattice Thermal Conductivity of Co1-XNixSb3. Phys. Rev. B 2002, 65, 094115. [Google Scholar] [CrossRef]
- Kittel, C.; Fong, C.Y. Quantum Theory of Solids, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Newell, D.B.; Tiesinga, E. The International System of Units (SI); NIST: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Leibfried, G.; Schlömann, E. Wärmeleitung in Elektrisch Isolierenden Kristallen; Vandenhoeck & Ruprecht: Göttingen, Germany, 1954. [Google Scholar]
- Slack, G.A. The Thermal Conductivity of Nonmetallic Crystals. In Solid State Physics; Elsevier: Amsterdam, The Netherlands, 1979; pp. 1–71. [Google Scholar]
- Inyushkin, A.V. Thermal Conductivity of Group IV Elemental Semiconductors. J. Appl. Phys. 2023, 134, 22. [Google Scholar] [CrossRef]
- Carruthers, J.A.; Geballe, T.H.; Rosenberg, H.M.; Ziman, J.M. The Thermal Conductivity of Germanium and Silicon between 2 and 300° K. Proc. R. Soc. Lond. A Math. Phys. Sci. 1957, 238, 502–514. [Google Scholar] [CrossRef]
- Slack, G.A. Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. J. Appl. Phys. 1964, 35, 3460–3466. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Phys. Rev. 1964, 134, A1058–A1069. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Broido, D. Phonon-Phonon Interactions in Strongly Bonded Solids: Selection Rules and Higher-Order Processes. Phys. Rev. X 2020, 10, 021063. [Google Scholar] [CrossRef]
- Klemens, P.G.; Williams, R.K. Thermal Conductivity of Metals and Alloys. Int. Met. Rev. 1986, 31, 197–215. [Google Scholar] [CrossRef]
- Pundt, A.; Wagner, S. Hydrogen Interactions with Defects in Materials. Chem. Ing. Tech. 2024, 96, 182–191. [Google Scholar] [CrossRef]
- Yoshida, A.; Naka, Y.; Ohkita, T. Experimental Study on Thermophysical and Kinetic Properties of the LaNi5-H2 System. Trans. Jpn. Soc. Mech. Eng. Part B 1990, 56, 536–540. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007; ISBN 978-0470115398. [Google Scholar]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 10.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018.
- Minko, K.B.; Lototskyy, M.V.; Bessarabskaya, I.E.; Tarasov, B.P. CFD Simulation of Heat and Mass Transfer Processes in a Metal Hydride Hydrogen Storage System, Taking into Account Changes in the Bed Structure. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Shabani, B. Review of Metal Hydride Hydrogen Storage Thermal Management for Use in the Fuel Cell Systems. Int. J. Hydrogen Energy 2021, 46, 31699–31726. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
ε | 0.52 |
μg | 8.8 × 10−6 Pa·s |
cp,g | 14,300 J kg−1·K−1 |
γ | 1.4 |
ks | 8 W m−1·K−1 |
d | 15 × 10−6 m |
dkin | 289 × 10−12 m |
lv | 0.034·d |
e | 0.5 |
Xmax | 1.45 wt % |
E | 155 × 109 Pa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarpati, G.; Puszkiel, J.A.; Warfsmann, J.; Karimi, F.; Jannelli, E.; Pistidda, C.; Klassen, T.; Jepsen, J. Comprehensive Overview of the Effective Thermal Conductivity for Hydride Materials: Experimental and Modeling Approaches. Energies 2025, 18, 194. https://doi.org/10.3390/en18010194
Scarpati G, Puszkiel JA, Warfsmann J, Karimi F, Jannelli E, Pistidda C, Klassen T, Jepsen J. Comprehensive Overview of the Effective Thermal Conductivity for Hydride Materials: Experimental and Modeling Approaches. Energies. 2025; 18(1):194. https://doi.org/10.3390/en18010194
Chicago/Turabian StyleScarpati, Gabriele, Julián A. Puszkiel, Jan Warfsmann, Fahim Karimi, Elio Jannelli, Claudio Pistidda, Thomas Klassen, and Julian Jepsen. 2025. "Comprehensive Overview of the Effective Thermal Conductivity for Hydride Materials: Experimental and Modeling Approaches" Energies 18, no. 1: 194. https://doi.org/10.3390/en18010194
APA StyleScarpati, G., Puszkiel, J. A., Warfsmann, J., Karimi, F., Jannelli, E., Pistidda, C., Klassen, T., & Jepsen, J. (2025). Comprehensive Overview of the Effective Thermal Conductivity for Hydride Materials: Experimental and Modeling Approaches. Energies, 18(1), 194. https://doi.org/10.3390/en18010194