Distribution Characteristics of Swirling-Straight Sprinklers Inside a Nuclear Power Pressurizer
Abstract
:1. Introduction
2. Experimental Setup
2.1. Experimental Process
2.2. Structural Design of Sprinkler
3. Results and Discussion
3.1. Relationship Between Flow Rate and Pressure Drop
3.2. Peak Fitting Mechanism of Spray Volume Distribution Curve
3.3. Effect of Pressure Drop on Peaking Fitting Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hashemizadeh, A.; Liu, W.; Zareian Baghdad Abadi, F. Assessing the viability of sustainable nuclear energy development in belt and road initiative countries. Energy Sustain. Dev. 2024, 81, 101519. [Google Scholar] [CrossRef]
- Xing, J.; Yu, P.; Meng, Z.; Lv, D.; Shang, Z.; Sun, Z. Depressurization strategy of automatic depressurization system for advanced pressurized water reactor. Ann. Nucl. Energy 2023, 191, 109911. [Google Scholar] [CrossRef]
- Malet, J.; Parduba, Z.; Mimouni, S.; Travis, J. Achievements of spray activities in nuclear reactor containments during the last decade. Ann. Nucl. Energy 2014, 74, 134–142. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, X.; Xiao, Z.; Cheng, M.; Zou, R.; Luo, G. Enhancement of fine particle removal through flue gas cooling in a spray tower with packing materials. J. Hazard. Mater. 2024, 478, 135390. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Zhao, C.; Cheng, S.; Wang, M.; Gao, Q.; He, S.; Sun, G.; Jiang, G.; Sun, Q.; Liu, Z.; et al. Investigation on feasible zone of nozzle spray for pre-cooling the inlet air of natural draft dry cooling tower. Therm. Sci. Eng. Prog. 2023, 38, 101650. [Google Scholar] [CrossRef]
- Liu, J.; Feng, X.; Liang, H.; Zhang, W.; Hui, Y.; Xu, H.; Yang, C. Prediction of atomization characteristics of pressure swirl nozzle with different structures. Chin. J. Chem. Eng. 2023, 63, 171–184. [Google Scholar] [CrossRef]
- Jedelský, J.; Malý, M.; Vankeswaram, S.K.; Zaremba, M.; Kardos, R.; Csemány, D.; Červenec, A.; Józsa, V. Effects of secondary breakup, collision dynamics, gravity and evaporation on droplet size distribution in a pressure-swirl JET A-1 spray. Fuel 2024, 359, 130103. [Google Scholar] [CrossRef]
- Chen, S.; Ashgriz, N. Droplet size distribution in swirl nozzles. Int. J. Multiphase Flow. 2022, 156, 104219. [Google Scholar] [CrossRef]
- Ma, X.; Li, F.; Wang, S.; Zhang, H. Evolution of biodiesel flow spray inside and near field in pressure swirl nozzles: Flow rate, atomization angle, and droplet size. Energy 2024, 291, 130337. [Google Scholar] [CrossRef]
- Amini, G. Liquid flow in a simplex swirl nozzle. Int. J. Multiphase Flow. 2016, 79, 225–235. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Sun, L. Studies on air core size in a simplex pressure-swirl atomizer. Int. J. Hydrog. Energy 2017, 42, 18649–18657. [Google Scholar] [CrossRef]
- Duan, R.; Feng, Z.; Duan, H.; Qu, H.; Tian, L.; Jia, W.; Baleta, J.; Wang, E.; Liu, L.; Tian, L. Energy equilibrium analysis in the effervescent atomization. Open Phys. 2020, 18, 925–932. [Google Scholar] [CrossRef]
- Tratnig, A.; Brenn, G. Drop size spectra in sprays from pressure-swirl atomizers. Int. J. Multiphase Flow. 2010, 36, 349–363. [Google Scholar] [CrossRef]
- Wang, P.; Saiful Hanif, A.; Yu, S.-H.; Lee, C.-G.; Ho Kang, Y.; Lee, D.-H.; Han, X. Development of an autonomous drone spraying control system based on the coefficient of variation of spray distribution. Comput. Electron. Agric. 2024, 227, 109529. [Google Scholar] [CrossRef]
- Sharda, A.; Fulton, J.P.; Mcdonald, T.P.; Brodbeck, C.J. Real-time nozzle flow uniformity when using automatic section control on agricultural sprinklers. Comput. Electron. Agric. 2011, 79, 169–179. [Google Scholar] [CrossRef]
- Xiao, L.; Gou, G.-M.; Wu, S.-Y.; Luo, J.; Xiang, Y. Effect of incident direction and droplet position on dynamic and heat transfer behaviors of droplet impacting on super-hydrophilic cylindrical surface. Ann. Nucl. Energy 2023, 187, 109785. [Google Scholar] [CrossRef]
- Zbicinski, I.; Li, X.Y. An investigation of error sources in computational fluid dynamics modelling of a co-current spray dryer. Chin. J. Chem. Eng. 2004, 12, 756–761. [Google Scholar]
- Xu, R.; Sharma, A.K.; Ozdemir, E.; Miwa, S.; Suzuki, S. Numerical investigation on improved spray system for efficient aerosol removal during the decommissioning of Fukushima Daiichi nuclear power plants. Nucl. Eng. Des. 2024, 419, 112960. [Google Scholar] [CrossRef]
- Elbadawy, I.; Gaskell, P.H.; Lawes, M.; Thompson, H.M. Numerical investigation of the effect of ambient turbulence on pressure swirl spray characteristics. Int. J. Multiphase Flow. 2015, 77, 271–284. [Google Scholar] [CrossRef]
- Yu, D.; Li, S.; Zhang, J.; Wang, N.; Ling, Z. A study on the performance of a swirling–straight composite nozzle. Asia-Pac. J. Chem. Eng. 2024, 19, e3025. [Google Scholar] [CrossRef]
- Lan, Z.; Zhu, D.; Tian, W.; Su, G.; Qiu, S. Experimental study on spray characteristics of pressure-swirl nozzles in pressurizer. Ann. Nucl. Energy 2014, 63, 215–227. [Google Scholar] [CrossRef]
- Christiansen, J.E. Irrigation by Sprinkling; University of California Berkeley: Berkeley, CA, USA, 1942. [Google Scholar]
- Green, D.; Pattison, I. Christiansen uniformity revisited: Re-thinking uniformity assessment in rainfall simulator studies. CATENA 2022, 217, 106424. [Google Scholar] [CrossRef]
- Zhu, X.; Fordjour, A.; Agyen Dwomoh, F.; Kwame Lewballah, J.; Anim Ofosu, S.; Liu, J.; Dai, X.; Oteng, J. Experimental study on the effects of pressure loss on uniformity, application rate and velocity on different working conditions using the dynamic fluidic sprinkler. Heliyon 2024, 10, e27140. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Lai, H.; Li, J.; Ma, Y. Visualization of internal flow and the effect of orifice geometry on the characteristics of spray and flow field in pressure-swirl atomizers. Appl. Therm. Eng. 2017, 127, 812–822. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, J.; Liu, T.; Zhu, H.; Liu, H.; Sun, B. A Gaussian-mixture-model based peak splitting method in X-ray fluorescence for high concentration ratio solution. Measurement 2024, 229, 114485. [Google Scholar] [CrossRef]
- Huang, J.; Fan, J.; He, J.; Shen, J.; Liu, C.; You, W.; Ye, X.; Zhang, L. Systematical investigations on the influence of Stark splitting of Er3+ on the potential wavelength-tunable of laser and optical amplification in several glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 326, 125163. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Biesinger, M.C.; Linford, M.R. The Gaussian-Lorentzian Sum, Product, and convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Appl. Surf. Sci. 2018, 447, 548–553. [Google Scholar] [CrossRef]
- Xie, Q.; Shi, D.; Chen, X.; Peng, L.; Sun, R. Investigation on dynamic splitting mechanical properties of weakly cemented siltstone based on digital image correlation method and FracPaQ algorithm. Geoenergy Sci. Eng. 2024, 243, 213310. [Google Scholar] [CrossRef]
- Ma, Z. Investigation on the Internal Flow Characteristics of Pressure-Swirl Atomizers. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2002. [Google Scholar]
Parameter | D1 | D2 | H | b | h | t | dc | dt | hsc | S |
---|---|---|---|---|---|---|---|---|---|---|
Sprinkler A | 40 | 17 | 30 | 12 | 5.4 | 2 | 10 | 22 | 20 | 9.67 |
Sprinkler B | 48 | 20.4 | 36 | 14.4 | 6.48 | 2.4 | 12 | 26.4 | 24 | 11.6 |
Sprinkler C | 40 | 17 | 30 | 12 | 5.4 | 2 | 11.6 | 22 | 20 | 9.67 |
Sprinkler D | 48 | 20.4 | 36 | 14.4 | 6.48 | 2.4 | 13.92 | 26.4 | 24 | 11.6 |
Parameter | Sprinkler A | Sprinkler B | Sprinkler C | Sprinkler D |
---|---|---|---|---|
xc1 | 8.02 ± 0.25 | 8.01 ± 0.78 | 9.93 ± 0.44 | 10.30 ± 0.24 |
xc2 | 116.95 ± 0.98 | 16.89 ± 0.57 | 16.67 ± 0.28 | 17.09 ± 0.11 |
xc3 | 26.59 ± 0.54 | 26.48 ± 0.44 | 23.78 ± 0.25 | 24.23 ± 0.24 |
w1 | 4.26 ± 0.34 | 4.46 ± 0.30 | 5.25 ± 0.47 | 4.81 ± 0.34 |
w2 | 16.77 ± 2.40 | 15.66 ± 1.41 | 5.30 ± 0.29 | 5.73 ± 0.25 |
w3 | 4.37 ± 0.53 | 4.79 ± 0.39 | 5.67 ± 0.48 | 5.41 ± 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, J.; Xu, X. Distribution Characteristics of Swirling-Straight Sprinklers Inside a Nuclear Power Pressurizer. Energies 2025, 18, 206. https://doi.org/10.3390/en18010206
Bi J, Xu X. Distribution Characteristics of Swirling-Straight Sprinklers Inside a Nuclear Power Pressurizer. Energies. 2025; 18(1):206. https://doi.org/10.3390/en18010206
Chicago/Turabian StyleBi, Jinghao, and Xiao Xu. 2025. "Distribution Characteristics of Swirling-Straight Sprinklers Inside a Nuclear Power Pressurizer" Energies 18, no. 1: 206. https://doi.org/10.3390/en18010206
APA StyleBi, J., & Xu, X. (2025). Distribution Characteristics of Swirling-Straight Sprinklers Inside a Nuclear Power Pressurizer. Energies, 18(1), 206. https://doi.org/10.3390/en18010206