The Effect of Contaminants and Temperatures of a High-Palm-Oil Biodiesel Blend on the Lifetime of a Diesel Fuel Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Fuels
2.2. Test Filter Paper
2.3. Test Procedure
2.3.1. Filter Blocking Test and Deposit Weight
2.3.2. Used Filter Weight
2.3.3. Filter Lifetime Evaluation
3. Results
3.1. Filter Blocking and Deposit Weight
3.2. Filter Lifetime
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mokhtar, M.; Sukmono, A.; Setiapraja, H.; Ma’ruf, M.; Yubaidah, S.; Haryono, I.; Rochmanto, B.; Soewono, R.T.; Sukra, K.F.A.; Thahar, A.; et al. Towards Nationwide Implementation of 40% Biodiesel Blend Fuel in Indonesia: A Comprehensive Road Test and Laboratory Evaluation. Biofuel Res. J. 2023, 10, 1876–1889. [Google Scholar] [CrossRef]
- Bondioli, P.; Bella, L.; Rivolta, G.; Farago, S.; Boschi, A.; Beretta, S. Study of Biodiesel Solid Contaminants by Means of Scan Electron Microscopy (SEM). Riv. Ital. Delle Sostanze Grasse 2015, 92, 11–16. [Google Scholar]
- Dunn, R.O. Effects of Minor Constituents on Cold Flow Properties and Performance of Biodiesel. Prog. Energy Combust. Sci. 2009, 35, 481–489. [Google Scholar] [CrossRef]
- Jolly, L.; Kitano, K.; Sakata, I.; Strojek, W.; Bunting, W. A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends. In Proceedings of the SAE 2010 Powertrains, Fuels and Lubricants Meeting, San Diego, CA, USA, 25–27 October 2010. [Google Scholar] [CrossRef]
- Thangamani, S.; Sundaresan, S.N.; Kannappan, S.S.; Barawkar, V.T.; Jeyaseelan, T. Impact of Biodiesel and Diesel Blends on the Fuel Filter: A Combined Experimental and Simulation Study. Energy 2021, 227, 120526. [Google Scholar] [CrossRef]
- Fitrika, G.K.; Kiono, B.F.T. Effects of the Use of B30 On Coal Mining Operation Dump Truck. Int. J. Sci. Res. Publ. 2022, 12, 93. [Google Scholar] [CrossRef]
- Tang, T.-W.; Ku, Y.-Y.; Chen, C.L. Impacts of Biodiesel Blends on Fuel Filters of High Pressure Common Rail (HPCR) System. In Proceedings of the SAE 2016 World Congress and Exhibition, Washington, DC, USA, 12 April 2016. [Google Scholar] [CrossRef]
- Fersner, A.S.; Galante-Fox, J.M. Biodiesel Feedstock and Contaminant Contributions to Diesel Fuel Filter Blocking. SAE Int. J. Fuels Lubr. 2014, 7, 783–791. [Google Scholar] [CrossRef]
- Tang, H.; Salley, S.O.; Simonng, K.Y. Fuel Properties and Precipitate Formation at Low Temperature in Soy-, Cottonseed-, and Poultry Fat-Based Biodiesel Blends. Fuel 2008, 87, 3006–3017. [Google Scholar] [CrossRef]
- Dunn, R.O. Cold Flow Properties of Biodiesel: A Guide to Getting an Accurate Analysis. Biofuels 2015, 6, 115–128. [Google Scholar] [CrossRef]
- Mendoza, L.; Plata, V.; Gauthier-Maradei, P.; Avellaneda, F. Characterization of Precipitate Formed above and below the Cloud Point of Palm Oil Biodiesel. Chem. Eng. Trans. 2015, 43, 475–480. [Google Scholar] [CrossRef]
- Ghaizani, M.A.; Abdurrosyid, I.; Paryanto, I.; Gozan, M. Monostearin Effects on the Formation of Precipitate in Palm Oil Biodiesel and Petroleum Diesel Blends with Various Storage Temperature. In Proceedings of the CSSPO International Conference 2018, Sarawak, Malaysia, 9–11 July 2018; Volume 52. [Google Scholar] [CrossRef]
- Suwannamit, S.; Ngammoh, J.; Funahashi, M.; Tasaki, M.; Krissanasaeranee, M.; Porntangjitlikit, S.; Silapakampeerapap, S.; Wuttimongkolchai, A.; Chiampradit, N. The Precipitation of Biodiesel Impurities at Low Temperature and Its Effect on Fuel Filter. In Proceedings of the 2019 JSAE/SAE Powertrains, Fuels and Lubricants Meeting, Kyoto, Japan, 26–29 August 2019. [Google Scholar] [CrossRef]
- Lee, I.; Pfalzgraf, L.M.; Poppe, G.B.; Powders, E.; Haines, T. Biodiesel Magazine. April 2007. Available online: https://biodieselmagazine.com/articles/the-role-of-sterol-glucosides-on-filter-plugging-1566 (accessed on 1 December 2024).
- Christensen, E.; McCormick, R.L.; Sigelko, J.; Johnson, S.; Zickmann, S.; Lopes, S.; Gault, R.; Slade, D. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability. SAE Int. J. Fuels Lubr. 2016, 9, 203–214. [Google Scholar] [CrossRef]
- Maruf, M.; Haryono, I. An Effect Of Biodiesel (B20) On Life Time Locomotive Fuel Filter. Maj. Ilm. Pengkaj. Ind. 2023, 13, 201–208. [Google Scholar] [CrossRef]
- Csontos, B.; Bernemyr, H.; Pach, M.; Hittig, H. Analysis of the Interaction between Soft Particles and Fuel Filter Media. SAE Int. J. Fuels Lubr. 2021, 14, 161–174. [Google Scholar] [CrossRef]
- Brazhenko, V.; Qiu, Y.; Mochalin, I.; Zhu, G.; Cai, J.-C.; Wang, D. Study of Hydraulic Oil Filtration Process from Solid Admixtures Using Rotating Perforated Cylinder. J. Taiwan Inst. Chem. Eng. 2022, 141, 104578. [Google Scholar] [CrossRef]
- Csontos, B.; Shinkhede, S.; Bernemyr, H.; Pach, M.; Hittig, H. Comparison of Fuel Filters and Adsorption Filters for Metal Carboxylate Separation; SAE Technical Paper 2021-24-0064. In Proceedings of the 15th International Conference on Engines & Vehicles, Napoli, Italy, 12–16 September 2021. [Google Scholar] [CrossRef]
- Bateni, H.; Saraeian, A.; Able, C. A Comprehensive Review on Biodiesel Purification and Upgrading. Biofuel Res. J. 2017, 4, 668–690. [Google Scholar] [CrossRef]
- Jocanovića, M.T.; Karanovićb, V.V.; Kneževićc, D.M.; Orošnjak, M.D. Diesel Fuel Filtration Problems with Modern Common Rail Injection Systems. Mil. Tech. Cour. 2017, 65, 968–993. [Google Scholar] [CrossRef]
- ISO 4406:2021; Hydraulic Fluid Power—Fluids—Method for Coding the Level of Contamination by Solid Particles 2021. International Organization for Standardization: Geneva, Switzerland, 2021.
- Bejger, A.; Gawdzińska, K. Fuel System Contamination Affecting Injection Equipment of Diesel Engines. Appl. Mech. Mater. 2016, 817, 27–33. [Google Scholar] [CrossRef]
- Verdegan, B.; True-Dahl, A.; Haberkamp, W.; Blizard, N.; Genter, D.; Quillen, E. Filtration Solutions for High Pressure Common Rail Fuel Systems. 2015. Available online: https://www.researchgate.net/profile/Abby-True-Dahl/publication/265984963_Filtration_Solutions_for_High_Pressure_Common_Rail_Fuel_Systems/links/559eb78a08aeffab5687c82e/Filtration-Solutions-for-High-Pressure-Common-Rail-Fuel-Systems.pdf (accessed on 14 December 2024).
- Wilfong, D.; Dallas, A.; Yang, C.; Johnson, P.; Viswanathan, K.; Madsen, M.; Tucker, B.; Hacker, J. Emerging Challenges of Fuel Filtration. Filtration 2010, 10, 107–117. [Google Scholar]
- JIS D1617:1998; Automobile Parts: Fuel Filters for Diesel Engine Test Method. Japanese Industrial Standard: Tokyo, Japan, 1998.
- Vora, R.; Kadam, V.; Thangaraja, J. Experimental Investigation on the Filtration Characteristics of a Commercial Diesel Filter Operated with Raw and Processed Karanja-Diesel Blends. Sadhana 2020, 45, 153. [Google Scholar] [CrossRef]
- Haryono, I.; Suryantoro, M.T.; Rochmanto, B.; Kurniawan, A.; Rohman, A.T.; Ma, M.; Setiapraja, H.; Yuwono, T.; Fuad, N.M.; Riswandi, E. An Effective Three Level Filtration System for Improved Contaminant Removal in High Ratio Biodiesel Blends An Effective Three Level Filtration System for Improved Contaminant Removal in High Ratio Biodiesel Blends. Evergreen 2023, 10, 1633–1641. [Google Scholar] [CrossRef]
- ISO 19438:2023; Diesel Fuel and Petrol Filters for Internal Combustion Engines—Filtration Efficiency Using Particle Counting and Contaminant Retention Capacity. International Organization for Standardization: Geneva, Switzerland, 2023.
- Ayrancy, H. Design and Performance Evaluation of a Fuel Filter. Master’s Thesis, Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey, 2010. Available online: https://etd.lib.metu.edu.tr/upload/12611586/index.pdf (accessed on 14 December 2024).
- Bainbridge, B. Understanding ISO Codes. Available online: https://www.hyprofiltration.com/blog/understanding-iso-codes (accessed on 3 November 2024).
- ASTM D6304-20; Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration 2020. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D7596-14; Standard Test Method for Automatic Particle Counting and Particle Shape Classification of Oils Using a Direct Imaging Integrated Tester. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D7806-20; Test Method for Determination of the Fatty Acid Methyl Ester (FAME) Content of a Blend of Biodiesel and Petroleum-Based Diesel Fuel Oil Using Mid-Infrared Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D6584-21; Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D0473-22; Test Method for Sediment in Crude Oils and Fuel Oils by the Extraction Method. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D6217-21; Test Method for Particulate Contamination in Middle Distillate Fuels by Laboratory Filtration. ASTM International: West Conshohocken, PA, USA, 2021.
- Komariah, L.N.; Hadiah, F.; Aprianjaya, F.; Nevriadi, F. Biodiesel Effects on Fuel Filter; Assessment of Clogging Characteristics. J. Phys. Conf. Ser. 2018, 1095, 012017. [Google Scholar] [CrossRef]
- Csontos, B.; Swarga, S.; Bernemyr, H.; Pach, M.; Hittig, H. Development of a Method to Measure Soft Particles from Diesel Type Fuels. In Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 16–18 April 2020. [Google Scholar] [CrossRef]
- Chupka, G.M.; Fouts, L.; Lennon, J.A.; Alleman, T.L.; Daniels, D.A.; McCormick, R.L. Saturated Monoglyceride Effects on Low-Temperature Performance of Biodiesel Blends. Fuel Process. Technol. 2014, 118, 302–309. [Google Scholar] [CrossRef]
- Cardeño, F.; Lapuerta, M.; Rios, L.; Agudelo, J.R. Reconsideration of Regulated Contamination Limits to Improve Filterability of Biodiesel and Blends with Diesel Fuels. Renew. Energy 2020, 159, 1243–1251. [Google Scholar] [CrossRef]
- Gopalan, K.; Raikova, S.; Smith, C.R.; Bannister, C.D.; Savvoulidi, M.; Chrysafi, S.; Johnston, N.; Chuck, C.J. The Impact of Biodiesel and Alternative Diesel Fuel Components on Filter Blocking through Accelerated Testing on a Novel High Pressure Common Rail Non-Firing Rig. Fuel 2020, 282, 118850. [Google Scholar] [CrossRef]
- Marcella, F.; Pichler, J.; Agocs, A.; Dewitz, B.; Drexler, T.; Orfaniotis, A. Root Causes for Low-Temperature Filter Blocking at Petrol Stations—A Field Study. Fuel 2024, 366, 131304. [Google Scholar] [CrossRef]
- Barker, J.; Langley, G.; Carter, A.; Herniman, J.; Reid, J.; Wilmot, E. Investigations Regarding the Causes of Filter Blocking in Diesel Powertrains. In Proceedings of the SAE Powertrains, Fuels & Lubricants Conference & Exhibition, Krakow, Poland, 6–8 September 2022; pp. 1–13. [Google Scholar] [CrossRef]
Parameter | Unit | B30 1 | B0_Diesel_48 2 | B0_Diesel_53 2 | B100 3 |
---|---|---|---|---|---|
Cetane number | 48 min | 48 min | 53 min | ||
Cetane index | 45 min | 45 min | 50 min | 51 min | |
Density (15 °C) | kg/m3 | 815–880 | 815–870 | 820–860 | |
Viscosity (40 °C) | mm2/s | 2.0–5.0 | 2.0–5.0 | 2.0–4.5 | 2.3–6.0 |
Sulfur content | %m/m | 0.25 max. | 0.35 max. | 0.03 max. | 0.001 max. |
Distillation, 90%v | °C | 370 max. | 340 max. | 360 max. | |
Distillation, 95%v | °C | 370 max. | 360 max. | ||
Flash point | °C | 52 min | 60 min | 55 min | 130 min |
Cloud point | °C | 18 max. | |||
Pour point | °C | 18 max. | 18 max. | 18 max. | |
Carbon residue | %m/m | 0.1 max. | 0.1 max. | 0.3 max. | 0.3 max. |
Water content | mg/kg | 425 max. | 500 max. | 500 max. | 350 max. |
FAME content | %v/v | 30 | 10 max. | 10 max. | 96.5 min |
Cu corrosion | Class | Class 1 max. | Class 1 max. | Class 1 max. | No. 1 |
Ash content | %m/m | 0.01 max. | 0.01 max. | 0.01 max. | 0.02 max. |
Sediment content | %m/m | 0.01 max. | 0.01 max. | 0.01 max. | |
Strong acid number | mgKOH/g | 0 | 0 | 0 | |
Total acid number | mgKOH/g | 0.6 max. | 0.6 max. | 0.3 max. | |
Apparent visual | Clear and bright | Clear and bright | Clear and bright | ||
color | No. ASTM | 3 max. | 3 max. | 1 max. | 3 max. |
Lubricity, (HFRR scar dia. at 60 °C) | micron | 460 max. | 460 max. | ||
Oxidation stability | hours | 35 min | 10 | ||
Cold Filter Plugging Point (CFPP) | °C | 15 max. | |||
Free glycerol | %m | 0.02 max. | |||
Total glycerol | %m | 0.024 max. | |||
Monoglycerides | %m | 0.055 max. | |||
Total contaminants | mg/L | 20 max. |
Filter ID | Size (µ) | Fuel | Soaking Temp. (°C) | Contaminant |
---|---|---|---|---|
F1 | 30 | B30 | 15 | - |
F2 | 30 | B0 | 15 | - |
F3 | 30 | B0 | 15 | JIZ 8, 1 g/10 L |
F4 | 30 | B30 | 15 | JIZ 8, 1 g/10 L |
F5 | 30 | B30 | 15 | JIZ 8, 2 g/10 L |
F6 | 30 | B30 | 27 | JIZ 8, 2 g/10 L |
FA | 10 | B30 | 18 | JIZ 8, 1 g/10 L |
FB | 10 | B0 | 18 | JIZ 8, 1 g/10 L |
Parameter | Unit | Method | Results | |
---|---|---|---|---|
B30 | B0 | |||
Water content | ppm | ASTM D6304-20 [32] | 266 | 86 |
Particle counter | ||||
4 microns | counts/mL | ASTM 7596 [33] | 23,744 | 477 |
6 microns | counts/mL | ASTM 7596 | 17,033 | 41 |
14 microns | counts/mL | ASTM 7596 | 904 | 1 |
ISO CODE 4406 | 22/21/17 | 16/13/7 | ||
FAME content | %vol | ASTM 7806 [34] | 30.48 | |
Total glycerol | %wt | ASTM D6584 [35] | 0.1646 | |
Sediment by extraction | %wt | ASTM D473-22 [36] | 0.005 | 0.007 |
Particulate contaminant | mg/L | ASTM D6217 [37] | 3.5 |
Particle Diameter | B30 | B0 | ||
---|---|---|---|---|
Number of Particles (Count/100 mL) | Total Particles Captured (Count) | Number of Particles (Count/100 mL) | Total Particles Captured (Count) | |
4 µ | 102,403 | 6,758,598 | 36,691 | 11,482,044 |
6 µ | 32,519 | 2,146,254 | 49,701 | 4,174,884 |
14 µ | 1577 | 104,082 | 1683 | 141,372 |
Particle Diameter | B30 (TOTAL) | B0 (TOTAL) |
---|---|---|
4 µ | 879,293,600 | 1,493,813,924 |
6 µ | 279,227,645 | 543,152,408 |
14 µ | 13,541,068 | 18,392,497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haryono, I.; Suryantoro, M.T.; Kurniawan, A.; Ma’ruf, M.; Rochmanto, B.; Setiapraja, H.; Rohman, A.T.; Soewono, R.T.; Yuwono, T.; Auzani, A.S. The Effect of Contaminants and Temperatures of a High-Palm-Oil Biodiesel Blend on the Lifetime of a Diesel Fuel Filter. Energies 2025, 18, 219. https://doi.org/10.3390/en18010219
Haryono I, Suryantoro MT, Kurniawan A, Ma’ruf M, Rochmanto B, Setiapraja H, Rohman AT, Soewono RT, Yuwono T, Auzani AS. The Effect of Contaminants and Temperatures of a High-Palm-Oil Biodiesel Blend on the Lifetime of a Diesel Fuel Filter. Energies. 2025; 18(1):219. https://doi.org/10.3390/en18010219
Chicago/Turabian StyleHaryono, Ihwan, Muchammad Taufiq Suryantoro, Ade Kurniawan, Muhammad Ma’ruf, Budi Rochmanto, Hari Setiapraja, Ahmad Taufiqur Rohman, Respatya Teguh Soewono, Taufik Yuwono, and Ahmad Syihan Auzani. 2025. "The Effect of Contaminants and Temperatures of a High-Palm-Oil Biodiesel Blend on the Lifetime of a Diesel Fuel Filter" Energies 18, no. 1: 219. https://doi.org/10.3390/en18010219
APA StyleHaryono, I., Suryantoro, M. T., Kurniawan, A., Ma’ruf, M., Rochmanto, B., Setiapraja, H., Rohman, A. T., Soewono, R. T., Yuwono, T., & Auzani, A. S. (2025). The Effect of Contaminants and Temperatures of a High-Palm-Oil Biodiesel Blend on the Lifetime of a Diesel Fuel Filter. Energies, 18(1), 219. https://doi.org/10.3390/en18010219