Energy Loss of Magnetic Coupling for Pump
Abstract
:1. Introduction
2. Theory Related to Energy Loss of Magnetic Pump Coupling
2.1. Isolation Sleeve Eddy Current Loss
2.2. Friction Loss Between Internal Magnetic Steel and Liquid Medium
3. Experimental Device for Transmission Performance of Magnetic Coupling for Pumps
4. Results and Discussion
4.1. Experimental Study on Factors Influencing Eddy Current Loss
4.1.1. The Influence of Rotation Speed on Eddy Current Loss
4.1.2. The Influence of Axial Coupling Length on Eddy Current Loss
4.1.3. The Influence of Isolation Sleeve Material on Eddy Current Loss
4.1.4. The Influence of Fluid Medium on Vortex Loss
4.2. Isolation Sleeve Temperature Distribution
5. Conclusions
- (1)
- The fitting formula for the variation of eddy current loss with rotation speed is .
- (2)
- The eddy current loss increases almost linearly with the axial coupling length of the magnetic coupling.
- (3)
- The eddy current loss increases linearly with the increase of the conductivity of the isolation sleeve material.
- (4)
- The influence of the conductivity and viscosity of the flowing medium on eddy current losses can be ignored.
- (5)
- The friction loss caused by the liquid medium inside the metal isolation sleeve is much lower than the eddy current loss generated by the isolation sleeve, and can be ignored; the energy loss of non-metallic isolation sleeves is mainly due to fluid friction loss and other losses.
- (6)
- The temperature rise is higher near the pump side of the isolation sleeve. The flow distribution of the cooling medium inside the isolation sleeve should be improved at the design stage, and the heat dissipation near the pump side of the isolation sleeve should be strengthened.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kowol, P.; Karol, B. Calculations for electromagnetic linear pump with magnetic fluid as movable element. In Proceedings of the 2019 Applications of Electromagnetics in Modern Engineering and Medicine, Janow Podlaski, Poland, 9–12 June 2019. [Google Scholar]
- Ravaud, R.; Lemarquand, G. Magnetic couplings with cylindrical and plane air gaps:influence of the magnet polarization direction. Prog. Electromagn. Res. B 2009, 16, 333–349. [Google Scholar] [CrossRef]
- Akcay, Y.; Tweedy, O.; Giangrande, P.; Galea, M. Design and analysis of a double coaxial magnetic coupling to improve torque density. In Proceedings of the IICON 2021-47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021. [Google Scholar]
- Aberoomand, V.; Mirsalim, M.; Fesharakifard, R. Design optimization of double-sided permanent-magnet axial eddy-current couplers for use in dynamic applications. IEEE Trans. Energy Convers. 2019, 34, 909–920. [Google Scholar] [CrossRef]
- Seo, K.; Park, G.S. A research on the pumping forces in the magnetic fluid linear pump. IEEE Trans. Magn. 2005, 41, 1580–1583. [Google Scholar]
- Kong, F.Y.; Shen, X.K.; Wang, W.T.; Zhou, S.Q. Performance study based on inner flow field numerical simulation of magnetic drive pumps with different rotate speeds. Chin. J. Mech. Eng. 2012, 25, 137–143. [Google Scholar] [CrossRef]
- Seo, S.W.; Kim, Y.H.; Lee, J.H.; Choi, J.Y. Analytical torque calculation and experimental verification of synchronous permanent magnet couplings with Halbach arrays. AIP Adv. 2018, 8, 056609. [Google Scholar] [CrossRef]
- Tonoli, A.; Amati, N. Dynamic modeling and experimental validation of eddy current dampers and couplers. J. Vib. Acoust. 2008, 130, 021011. [Google Scholar] [CrossRef]
- Strinić, T.; Wex, B.; Jungmayr, G.; Stallinger, T.; Frevert, J.; Panholzer, M. An Alternative Method for Calculating the Eddy Current Loss in the Sleeve of a Sealless Pump. Actuators 2021, 10, 78. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mojtaba, M.; Sadegh, V.-Z.; Heidar, A.-T. Analytical modeling and analysis of axial-flux interior permanent-magnet couplers. IEEE Trans. Ind. Electron. 2014, 61, 5940–5947. [Google Scholar] [CrossRef]
- Ziolkowski, M.; Brauer, H. Fast computation technique of forces acting on moving permanent magnet. IEEE Trans. Magn. 2010, 46, 2927–2930. [Google Scholar] [CrossRef]
- Li, B.F.; Liu, G. A shear model for unsteady state for viscoelastic fluids, based on the correction of torque transfer lag. Phys. Fluids 2019, 31, 023103. [Google Scholar] [CrossRef]
- Lubin, T. Simple analytical expressions for the force and torque of axial magnetic couplings. IEEE Trans. Energy Convers. 2012, 27, 536–546. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Chen, J.; Zhang, Q.; Xuan, T. Electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machine by bidirectional method. IEEE Trans. Magn. 2018, 54, 8102705. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Quan, L.; Wang, L. Performance analysis of a double-salient permanent-magnet double-rotor motor using electromagnetic–thermal coupling method. IEEE Trans. Appl. Supercond. 2016, 26, 5205305. [Google Scholar] [CrossRef]
- Zhang, G.; Hua, W.; Cheng, M.; Zhang, B.; Guo, X. Coupled magnetic-thermal fields analysis of water cooling flux-switching permanent magnet motors by an axially segmented model. Electromagn. Field Comput. 2017, 53, 8106504. [Google Scholar] [CrossRef]
- Jang, G.H.; Seo, S.W.; Kim, C.W.; Shin, K.H.; Nah, J.; Choi, J.Y. Design of axial flux type permanent magnet coupling with halbach magnet array for optimal performance considering eddy current loss reduction using 3-D finite element method. Int. J. Eng. Technol. 2018, 7, 184–187. [Google Scholar] [CrossRef]
- Hyeon-Jae, S.; Jang-Young, C.; Seok-Myeong, J.; Kwang-Youn, L. Design and Analysis of Axial Permanent Magnet Couplings Based on 3D FEM. IEEE Trans. Magn. 2013, 49, 3985–3988. [Google Scholar]
- Liu, L.; He, L.; Liu, X.; Han, Y.; Sun, B.; Cheng, G. Design and experiment of a low frequency non-contact rotary piezoelectric energy harvester excited by magnetic coupling. Energy 2022, 258, 124882. [Google Scholar] [CrossRef]
- Ravaud, R.; Lemarquand, G.; Lemarquand, V.; Depollier, C. Permanent Magnet Couplings:field and torque three-dimensional expressions based on the coulombian model. IEEE Trans. Magn. 2009, 45, 1950–1958. [Google Scholar] [CrossRef]
- Yuan, D.Q.; He, Y.Q.; Li, J.Q.; Zhang, H.; Chang, C.F. Numerical simulation and experiment of a new drive device of high-temperature magnetic pump. Appl. Mech. Mater. 2010, 26–28, 736–741. [Google Scholar] [CrossRef]
- An, Y.J.; Liu, G.M.; Wang, P.; Wen, H.L.; Meng, Z.J. Magnetic force analysis and experiment of novel permanent magnet axial thrust balance structure in canned motor pump. In Proceedings of the 2nd IEEE International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; Volume 1, pp. 396–398. [Google Scholar]
- Roman, C.; Fireteanu, V.; Vitry, S.; Rey, F. Transient magnetic-Translating motion finite element model of the Annular Linear Induction Pump. In Proceedings of the 2012 International Conference on Applied and Theoretical Electricity, Craiova, Romania, 25–27 October 2012; pp. 25–27. [Google Scholar]
- Wang, J.Q.; Qian, W.F.; Wang, K. Influencing factors of magnetic coupling transmission of magnetic pump. Paiguan Jixie Gongcheng Xuebao 2022, 40, 244–249. [Google Scholar]
- Khan, A.; Yamaguchi, H. On the Rosensweig instability of ferrofluid-infused surfaces under a uniform magnetic field. Phys. Fluids 2023, 35, 113306. [Google Scholar]
- Yamazaki, K.; Yu, F.; Sato, M. Loss Analysis of Permanent-Magnet Motors with Concentrated Windings-Variation of Magnet Eddy-Current Loss Due to Stator and Rotor Shapes. IEEE Trans Ind. Appl. 2009, 45, 1334–1342. [Google Scholar] [CrossRef]
- Lu, M.; Meng, X.; Huang, R.; Chen, L.; Peyton, A.; Yin, W. A high-frequency phase feature for the measurement of magnetic permeability using eddy current sensor. NDT Int. 2021, 123, 102519. [Google Scholar] [CrossRef]
- Simpkin, R. Derivation of Lichtenecker’s Logarithmic Mixture Formula from Maxwell’s Equations. IEEE Trans. Microw. Theory Tech. 2010, 58, 545–550. [Google Scholar] [CrossRef]
- Chen, G. Design and Research of High Speed Magnetic Driven Centrifugal Pump. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2005. [Google Scholar]
Parameters | mm | Materials |
---|---|---|
Thickness of inner substrate tii | 12.5 | Steel-1008 |
Outer diameter of inner magnetic steel r1o | 68 | NdFeB N38SH |
Thickness of inner magnetic steel tim | 10.5 | — |
Thickness of external magnetic steel tom | 10.5 | NdFeB N38SH |
Inner diameter of outer magnetic steel r2i | 73.5 | — |
Thickness of outer substrate toi | 10.9 | Steel-1008 |
Inner diameter of inner wall of isolation sleeve r3 | 70 | — |
Wall thickness of isolation sleeve tb | 1.5 | — |
Bottom thickness of isolation sleeve td | 5 | 304/TC4/PMMA |
Axial coupling length l | 70/80/90/100 | — |
Materials | Electric Conductivity σ/(S/m) | Thermal Conductivity λ/(W/(m·K)) | Density ρ/(kg/m3) |
---|---|---|---|
Stainless steel (304) | 1.40 × 106 | 16 | 7850 |
Titanium alloy (TC4) | 8.43 × 105 | 7.62 | 4510 |
Plexiglass (PMMA) | 10−12 | 0.19 | 1180 |
Medium | Conductivity σ/(s/m) | Densities ρ/(kg/m3) | Viscosity μ/(mPa.s) |
---|---|---|---|
Water | 0.7 | 1000 | 1.005 |
Saturated saline | 19.71 | 1333 | 1.632 |
Rotation Speed n/(r/min) | Temperature at P1 t1/°C | Temperature at P2 t2/°C | Temperature at P3 t3/°C |
---|---|---|---|
500 | 22.3 | 24.6 | 25.7 |
700 | 21.6 | 23.2 | 25.6 |
900 | 22.2 | 23.6 | 27.3 |
1100 | 22.3 | 25.1 | 31.4 |
1300 | 23.1 | 25.6 | 32.6 |
1500 | 24.2 | 28.6 | 37.2 |
1700 | 24.3 | 31.2 | 40.5 |
1900 | 24.9 | 31.4 | 43.6 |
2100 | 26.7 | 36.5 | 49.2 |
2300 | 30.2 | 38.5 | 53.6 |
2500 | 32.1 | 47.2 | 59.5 |
2700 | 34.2 | 49.8 | 64.2 |
2900 | 39.8 | 50.2 | 68.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Duan, J.; Zhang, R.; Sun, J. Energy Loss of Magnetic Coupling for Pump. Energies 2025, 18, 455. https://doi.org/10.3390/en18030455
Wang J, Duan J, Zhang R, Sun J. Energy Loss of Magnetic Coupling for Pump. Energies. 2025; 18(3):455. https://doi.org/10.3390/en18030455
Chicago/Turabian StyleWang, Jiaqiong, Jundong Duan, Ruijie Zhang, and Jingru Sun. 2025. "Energy Loss of Magnetic Coupling for Pump" Energies 18, no. 3: 455. https://doi.org/10.3390/en18030455
APA StyleWang, J., Duan, J., Zhang, R., & Sun, J. (2025). Energy Loss of Magnetic Coupling for Pump. Energies, 18(3), 455. https://doi.org/10.3390/en18030455