Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization
Abstract
:1. Introduction
- Research on mechanical energy storage has grown from 345 articles in 2015 to 780 articles in 2024, representing a 125% increase.
- Studies on chemical energy storage have surged from 6717 articles in 2015 to 16,619 articles in 2024, marking a 147% rise.
- Similarly, research on electrochemical energy storage has doubled, from 7229 articles in 2015 to 15686 articles in 2024.
- Finally, thermal energy storage publications have grown from 969 articles in 2015 to 2539 articles in 2024, reflecting a 162% increase.
- Mechanical energy storage, including pumped hydro energy storage (PHES) and compressed air energy storage (CAES).
- Chemical energy storage, encompassing hydrogen storage and synthetic fuel storage.
- Electrochemical energy storage, represented by redox flow batteries and lithium-ion batteries.
- Thermal energy storage, comprising sensible heat storage (STS), latent heat storage (LTS), and thermochemical heat storage (THS).
2. Mechanical Energy Storage
2.1. Pumped Hydro Energy Storage
2.1.1. Overview
2.1.2. Advantages and Challenges
2.1.3. Outlook
2.2. Compressed Air Energy Storage
2.2.1. Overview
2.2.2. Types and Technical Characteristics
2.2.3. Outlook
3. Chemical Energy Storage
3.1. Hydrogen Energy Storage
3.1.1. Overview
3.1.2. Types and Technical Characteristics
3.1.3. Outlook
3.2. Synthetic Fuel Energy Storage
3.2.1. Overview
3.2.2. Advantages and Challenges
4. Electrochemical Energy Storage
4.1. Lithium-Ion Battery
4.2. Redox Flow Battery
5. Thermal Energy Storage
5.1. Sensible Heat Storage
5.1.1. Overview
5.1.2. Types and Technical Characteristics
5.1.3. Outlook
5.2. Latent Heat Storage
5.2.1. Overview
5.2.2. Types and Technical Characteristics
5.2.3. Outlook
5.3. Thermochemical Heat Storage
5.3.1. Overview
5.3.2. Types and Technical Characteristics
5.3.3. Outlook
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shahzad, S.; Abbasi, M.A.; Shahid, M.B.; Guerrero, J.M. Unlocking the potential of long-duration energy storage: Pathways to net-zero emissions through global innovation and collaboration. J. Energy Storage 2024, 97, 112904. [Google Scholar] [CrossRef]
- Rahman, M.M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Shan, R.; Reagan, J.; Castellanos, S.; Kurtz, S.; Kittner, N. Evaluating emerging long-duration energy storage technologies. Renew. Sustain. Energy Rev. 2022, 159, 112240. [Google Scholar] [CrossRef]
- Sepulveda, N.A.; Jenkins, J.D.; Edington, A.; Mallapragada, D.S.; Lester, R.K. The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 2021, 6, 506–516. [Google Scholar] [CrossRef]
- Nikolaos, P.C.; Marios, F.; Dimitris, K. A Review of Pumped Hydro Storage Systems. Energies 2023, 16, 4516. [Google Scholar] [CrossRef]
- Odoi-Yorke, F.; Abbey, A.A.; Frimpong, T.A.; Asante, E.; Amewornu, E.M.; Davis, J.E.; Agyekum, E.B.; Atepor, L. A bird’s eye view of pumped hydro energy storage: A bibliometric analysis of global research trends and future directions. J. Energy Storage 2024, 103, 114339. [Google Scholar] [CrossRef]
- Blakers, A.; Stocks, M.; Lu, B.; Cheng, C. A review of pumped hydro energy storage. Prog. Energy 2021, 3, 022003. [Google Scholar] [CrossRef]
- Hunt, J.D.; Silva, C.V.; Fonseca, E.; de Freitas, M.A.V.; Brandão, R.; Wada, Y. Role of pumped hydro storage plants for flood control. J. Energy Storage 2024, 104, 114496. [Google Scholar] [CrossRef]
- Rogeau, A.; Girard, R.; Kariniotakis, G. A generic GIS-based method for small pumped hydro energy storage (PHES) potential evaluation at large scale. Appl. Energy 2017, 197, 241–253. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Wang, H.; Wang, F.; Wang, C.; Wang, B.; Li, C.; Li, D. A prospective assessment of scale effects of energy conversion in ultra-low-head pumped hydro energy storage units. Energy Convers. Manag. 2024, 315, 118798. [Google Scholar] [CrossRef]
- Lahmer, Y.; Chaker, A.; Nedjar, A. Performance evaluation of grid-connected photovoltaic with pumped hydro storage system in high-rise building. Energy Sustain. Dev. 2024, 81, 101470. [Google Scholar] [CrossRef]
- Hadidi, A. Energy, economic and environmental evaluation of the energy storage capabilities of artificial lakes based on pumped-hydro storage systems with a case study of Daghgoli artificial recreational lake. J. Energy Storage 2024, 97, 112871. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, D.; Yang, L.; Lin, G.; Fu, J.; Li, X. A method for optimizing the capacity allocation of a photovoltaic-pumped hydro storage system in an abandoned coal mine. Heliyon 2024, 10, e38779. [Google Scholar] [CrossRef]
- Maio, M.; Marrasso, E.; Roselli, C.; Sasso, M.; Fontana, N.; Marini, G. An innovative approach for optimal selection of pumped hydro energy storage systems to foster sustainable energy integration. Renew. Energy 2024, 227, 120533. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Kalhammer, F.R.; Schneider, T.R. Energy Storage. Annu. Rev. Energy 1976, 1, 311–343. [Google Scholar] [CrossRef]
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Rabi, A.M.; Radulovic, J.; Buick, J.M. Comprehensive Review of Compressed Air Energy Storage (CAES) Technologies. Thermo 2023, 3, 104–126. [Google Scholar] [CrossRef]
- Jankowski, M.; Pałac, A.; Sornek, K.; Goryl, W.; Żołądek, M.; Homa, M.; Filipowicz, M. Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review. Energies 2024, 17, 2064. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J.; Krupke, C. Overview of Current Development in Compressed Air Energy Storage Technology. Energy Procedia 2014, 62, 603–611. [Google Scholar] [CrossRef]
- Sterner, M.; Stadler, I. (Eds.) Handbook of Energy Storage: Demand, Technologies, Integration, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- He, W.; Wang, J.; Wang, Y.; Ding, Y.; Chen, H.; Wu, Y.; Garvey, S. Study of Cycle-to-Cycle Dynamic Characteristics of Adiabatic Compressed Air Energy Storage Using Packed Bed Thermal Energy Storage. Energy 2017, 141, 2120–2134. [Google Scholar] [CrossRef]
- Qin, C.; Loth, E. Liquid piston compression efficiency with droplet heat transfer. Appl. Energy 2014, 114, 539–550. [Google Scholar] [CrossRef]
- Kim, T.; Lee, C.-Y.; Hwang, Y.; Radermacher, R. A Review on Nearly Isothermal Compression Technology. Int. J. Refrig. 2022, 144, 145–162. [Google Scholar] [CrossRef]
- Li, P.Y. Isothermal Compressed Air Energy Storage (i-CAES) System. In Encyclopedia of Energy Storage; Elsevier: Amsterdam, The Netherlands, 2022; pp. 204–217. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghorbani, B.; Khodaverdi, M. Hydrogen production by thermochemical water splitting cycle using low-grade solar heat and phase change material energy storage system. Int. J. Energy Res. 2022, 46, 7590–7609. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J. Revolution in renewables: Integration of green hydrogen for a sustainable future. Energies 2024, 17, 4148. [Google Scholar] [CrossRef]
- Ferroukhi, R.; Frankl, P.; Adib, R. Renewable Energy Policies in a Time of Transition: Heating and Cooling. 2020. Available online: https://www.researchgate.net/publication/347575614 (accessed on 18 January 2025).
- Ferrara, M.; Mottola, F.; Proto, D.; Ricca, A.; Valenti, M. Local energy community to support hydrogen production and network flexibility. Energies 2024, 17, 3663. [Google Scholar] [CrossRef]
- Jain, I.P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Hassan, Q.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M.; Al-Jiboory, A.K. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. J. Energy Storage 2023, 72 Pt B, 108404. [Google Scholar] [CrossRef]
- Li, X.; Huang, Q.; Liu, Y.; Zhao, B.; Li, J. Review of the hydrogen permeation test of the polymer liner material of type IV on-board hydrogen storage cylinders. Materials 2023, 16, 5366. [Google Scholar] [CrossRef]
- Lv, H.; Chen, G.; Gao, X.; Xu, Q.; Zhao, Y.; Su, S.; Xia, L.; Zhang, G.; Hu, K. Study on the methodology for evaluating the filling quality of type III hydrogen storage cylinders. Int. J. Hydrogen Energy 2023, 48, 36825–36835. [Google Scholar] [CrossRef]
- Li, J.; Chai, X.; Gu, Y.; Zhang, P.; Yang, X.; Wen, Y.; Xu, Z.; Jiang, B.; Wang, J.; Jin, G. Small-scale high-pressure hydrogen storage vessels: A review. Materials 2024, 17, 721. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhou, Y.; Li, Y.; Ding, Z. Research progress and application prospects of solid-state hydrogen storage technology. Molecules 2024, 29, 1767. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, J.; Pishva, P.; Xie, R.; Peng, Z. Aqueous, rechargeable liquid organic hydrogen carrier battery for high-capacity, safe energy storage. ACS Energy Lett. 2023, 8, 3727–3732. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, A.; Ichikawa, T.; Kojima, Y.; Dey, G.K. Development of vanadium based hydrogen storage material: A review. Renew. Sustain. Energy Rev. 2017, 72, 791–800. [Google Scholar] [CrossRef]
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Society, T.R. Sustainable Synthetic Carbon-Based Fuels for Transport: Policy Briefing; Royal Society: London, UK, 2019. [Google Scholar]
- Wang, T.; Zhou, T.; Li, C.; Song, Q.; Zhang, M.; Yang, H. Development Status and Prospects of Biomass Energy in China. Energies 2024, 17, 4484. [Google Scholar] [CrossRef]
- Leonzio, G. Methanol synthesis: Optimal solution for a better efficiency of the process. Processes 2018, 6, 20. [Google Scholar] [CrossRef]
- Inal, O.; Zincir, B.; Deniz, C. Hydrogen and Ammonia for the Decarbonization of Shipping. In Proceedings of the 5th International Hydrogen Technologies Congress, Shanghai, China, 3–4 June 2021. [Google Scholar]
- Masterson, V. Renewables Were the World’s Cheapest Source of Energy in 2020. World Economic Forum. 2021. Available online: https://www.weforum.org/agenda/2021/07/renewables-cheapest-energy-source/ (accessed on 1 July 2021).
- Chang, X.; Zhao, Y.M.; Yuan, B.; Fan, M.; Meng, Q.; Guo, Y.-G.; Wan, L.-J. Solid-state lithium-ion batteries for grid energy storage: Opportunities and challenges. Sci. China Chem. 2024, 67, 43–66. [Google Scholar] [CrossRef]
- Kubiak, P.; Cen, Z.; López, C.M.; Belharouak, I. Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application. J. Power Sources 2017, 372, 16–23. [Google Scholar] [CrossRef]
- Wang, J.; Purewal, J.; Liu, P.; Hicks-Garner, J.; Soukazian, S.; Sherman, E.; Sorenson, A.; Vu, L.; Tataria, H.; Verbrugge, M.W. Degradation of lithium-ion batteries employing graphite negatives and nickel–cobalt–manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources 2014, 269, 937–948. [Google Scholar] [CrossRef]
- Zalosh, R.; Gandhi, P.; Barowy, A. Lithium-ion energy storage battery explosion incidents. J. Loss Prev. Process Ind. 2021, 72, 104560. [Google Scholar] [CrossRef]
- Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium-ion batteries. Energy Storage Mater. 2016, 5, 139–164. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.Q.; Shen, L.; Liu, Q.; Ma, J.B.; Lv, W.; He, Y.B.; Yang, Q.H. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv. Sci. 2020, 7, 1903088. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Liu, Y.; Wang, L.; Cui, F.; Liu, B.; Hu, W.; Lu, Y.; Zhu, G. Porphyrin-framed PAF Based Single-Ion Lithium Salt Boosting Quasi Solid-State Lithium-Ion Battery Performance at Low Temperatures. Adv. Energy Mater. 2024, 2404008. [Google Scholar] [CrossRef]
- Bruen, T.; Marco, J. Modelling and experimental evaluation of parallel connected lithium-ion cells for an electric vehicle battery system. J. Power Sources 2016, 310, 91–101. [Google Scholar] [CrossRef]
- Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J. Power Sources 2020, 493, 228804. [Google Scholar] [CrossRef]
- Ebner, S.; Spirk, S.; Stern, T.; Mair-Bauernfeind, C. How green are redox flow batteries? ChemSusChem 2023, 16, e202201818. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, R.; Wang, W.; Yu, G. Emerging chemistries and molecular designs for flow batteries. Nat. Rev. Chem. 2022, 6, 524–543. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, X.; Pan, Z. Electrochemical systems for renewable energy conversion and storage: Focus on flow batteries and regenerative fuel cells. Curr. Opin. Electrochem. 2024, 48, 101596. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Bozkaya, B.; Zeiler, W. The effectiveness of night ventilation for the thermal balance of an aquifer thermal energy storage. Appl. Therm. Eng. 2019, 146, 190–202. [Google Scholar] [CrossRef]
- Babaei, M.; Nick, H.M. Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings. Appl. Energy 2019, 253, 113569. [Google Scholar] [CrossRef]
- Schout, G.; Drijver, B.; Schotting, R. The influence of the injection temperature on the recovery efficiency of high-temperature aquifer thermal energy storage: Comment on Jeon et al., 2015. Energy 2016, 103, 107–109. [Google Scholar] [CrossRef]
- Mahon, H.; O’Connor, D.; Friedrich, D.; Hughes, B. A review of thermal energy storage technologies for seasonal loops. Energy 2022, 239 Pt C, 122207. [Google Scholar] [CrossRef]
- Pavlov, G.K.; Olesen, B.W. Seasonal ground solar thermal energy storage: Review of systems and applications. In Proceedings of the 30th ISES Biennial Solar World Congress 2011 (SWC 2011), Kassel, Germany, 28 August–2 September 2011; Volume 6, pp. 4864–4874. [Google Scholar] [CrossRef]
- Novo, A.V.; Bayon, J.R.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Review of seasonal heat storage in large basins: Water tanks and gravel–water pits. Appl. Energy 2010, 87, 390–397. [Google Scholar] [CrossRef]
- Morchio, S.; Fossa, M. On the ground thermal conductivity estimation with coaxial borehole heat exchangers according to different undisturbed ground temperature profiles. Appl. Therm. Eng. 2020, 173, 115198. [Google Scholar] [CrossRef]
- Cheruy, F.; Dufresne, J.L.; Aït Mesbah, S.; Grandpeix, J.Y.; Wang, F. Role of soil thermal inertia in surface temperature and soil moisture-temperature feedback. J. Adv. Model. Earth Syst. 2017, 9, 2906–2919. [Google Scholar] [CrossRef]
- Kallesøe, A.J.; Vangkilde-Pedersen, T.; Nielsen, J.E.; Sørensen, P.A.; Bakema, G.; Drijver, B.; Pittens, B.; Buik, N.; Egermann, P.; Rey, C.; et al. Underground Thermal Energy Storage (UTES)—State-of-the-Art, Example Cases and Lessons Learned; HEATSTORE Project Report, GEOTHERMICA—ERA NET Cofund Geothermal: 2019. Available online: https://www.heatstore.eu/documents/HEATSTORE_UTES%20State%20of%20the%20Art_WP1_D1.1_Final_2019.04.26.pdf (accessed on 26 April 2019).
- Wołoszyn, J. Global sensitivity analysis of borehole thermal energy storage efficiency for seventeen material, design and operating parameters. Renew. Energy 2020, 157, 545–559. [Google Scholar] [CrossRef]
- Prieto, C.; Tagle-Salazar, P.D.; Patiño, D.; Schallenberg-Rodriguez, J.; Lyons, P.; Cabeza, L.F. Use of molten salts tanks for seasonal thermal energy storage for high penetration of renewable energies in the grid. J. Energy Storage 2024, 86 Pt A, 111203. [Google Scholar] [CrossRef]
- Kuravi, S.; Trahan, J.; Goswami, D.Y.; Rahman, M.M.; Stefanakos, E.K. Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 2013, 39, 285–319. [Google Scholar] [CrossRef]
- Ding, W.; Shi, H.; Xiu, Y.; Bonk, A.; Weisenburger, A.; Jianu, A.; Bauer, T. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl₂/KCl/NaCl under inert atmosphere. Sol. Energy Mater. Sol. Cells 2018, 184, 22–30. [Google Scholar] [CrossRef]
- Lantelme, F.; Groult, H. Molten Salts Chemistry: From Lab to Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Li, Z.; Lu, Y.; Huang, R.; Chang, J.; Yu, X.; Jiang, R.; Yu, X.; Roskilly, A.P. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Appl. Energy 2021, 283, 116277. [Google Scholar] [CrossRef]
- Ghosh, D.; Ghose, J.; Datta, P.; Kumari, P.; Paul, S. Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect. J. Energy Storage 2022, 53, 105179. [Google Scholar] [CrossRef]
- Aydin, D.; Casey, S.P.; Riffat, S. The latest advancements on thermochemical heat storage systems. Renew. Sustain. Energy Rev. 2015, 41, 356–367. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P. Review of carbonate-based systems for thermochemical energy storage for concentrating solar power applications: State-of-the-art and outlook. Energy Fuels 2023, 37, 1777–1808. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.; Wu, H.; Li, C.; Zhang, M.; Yang, H. Critical Review of Ca(OH)₂/CaO Thermochemical Energy Storage Materials. Energies 2023, 16, 3019. [Google Scholar] [CrossRef]
- Maruyama, A.; Kurosawa, R.; Ryu, J. Effect of Lithium Compound Addition on the Dehydration and Hydration of Calcium Hydroxide as a Chemical Heat Storage Material. ACS Omega 2020, 5, 9820–9829. [Google Scholar] [CrossRef]
- Huang, C.; Xu, M.; Huai, X. Experimental investigation on thermodynamic and kinetic of calcium hydroxide dehydration with hexagonal boron nitride doping for thermochemical energy storage. Chem. Eng. Sci. 2019, 206, 518–526. [Google Scholar] [CrossRef]
- Amjadi, O.; Tahmasebpoor, M.; Aghdasinia, H. Fluidization Behavior of Cohesive Ca(OH)2 Powders Mixed with Hydrophobic Silica Nanoparticles. Chem. Eng. Technol. 2019, 42, 287–296. [Google Scholar] [CrossRef]
- Gupta, A.; Armatis, P.D.; Sabharwall, P.; Fronk, B.M.; Utgikar, V. Kinetics of Ca(OH)2 decomposition in pure Ca(OH)2 and Ca(OH)2-CaTiO3 composite pellets for application in thermochemical energy storage system. Chem. Eng. Sci. 2021, 246, 116986. [Google Scholar] [CrossRef]
- Briones, L.; Valverde-Pizarro, C.M.; Barras-García, I.; Tajuelo, C.; Sanz-Pérez, E.S.; Sanz, R.; Escola, J.M.; González-Aguilar, J.; Romero, M. Development of stable porous silica-coated Ca(OH)2/γ-Al2O3 pellets for dehydration/hydration cycles with application in thermochemical heat storage. J. Energy Storage 2022, 51, 104548. [Google Scholar] [CrossRef]
- Álvarez Criado, Y.; Alonso, M.; Abanades, J.C. Composite Material for Thermochemical Energy Storage Using CaO/Ca(OH)2. Ind. Eng. Chem. Res. 2015, 54, 9314–9327. [Google Scholar] [CrossRef]
- Afflerbach, S.; Kappes, M.; Gipperich, A.; Trettin, R.; Krumm, W. Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions. Sol. Energy 2017, 148, 1–11. [Google Scholar] [CrossRef]
- Chang, X.L.; Yan, T.; Wang, Z.; Pan, W.G.; Wang, L.W. State of the art on solid–gas sorption based long-term thermochemical energy storage. Chem. Eng. Sci. 2025, 302 Pt A, 120853. [Google Scholar] [CrossRef]
CAES Technology | Advantages | Disadvantages |
---|---|---|
D-CAES | Mature technology Simple system structure | Requires additional fossil fuel heating Significant energy loss during compression |
A-CAES | Minimal energy loss during compression | Slow system response |
Low storage temperature | ||
High system efficiency | ||
I-CAES | Negligible energy loss during compression | Complex system structureLow power output level |
High energy density | ||
Very high system efficiency |
Hydrogen Storage Method | Advantages | Disadvantages |
---|---|---|
Gaseous hydrogen storage | Fast refueling Convenient operation Relatively low cost | Low energy density High leakage risk High energy consumption during refueling |
Liquid hydrogen storage | Higher energy density | Requires cryogenic storage (−253 °C) High losses over long-duration storage Significant energy consumption during storage |
Solid-state hydrogen storage | Highest energy density | Technology is still in the development stage |
Thermal Energy Storage Technology | Advantages | Disadvantages |
---|---|---|
ATES | Low cost Large heat storage capacity | Limited by geographical conditions Risk of groundwater contamination |
TTES/PTES | Less dependent on geological conditions Can use liquid–solid mixed materials | Requires larger storage space High tank construction costs |
BTES | High storage temperature (~90 °C) | High construction costs Low initial storage efficiency |
Molten salt energy storage | High storage temperature (565 °C), large capacity | Poor long-term thermal stability of molten salts Corrosiveness of molten salts to metals |
Seasonal self-insulating gravel thermal storage system | High storage temperature (500 °C) Self-insulation with low-cost materials Large heat storage capacity | Still in the research stage |
LDES Technologies | Storage Medium | Storage Form | Storage Duration | Storage Efficiency (or Self-Loss Rate) | |
---|---|---|---|---|---|
Mechanical energy storage | PHES | Water | Gravitational potential energy | Several hours to several days | ~80% |
CAES | Air | Elastic potential energy | Several hours to several days | 55–75% | |
Chemical energy storage | Hydrogen energy storage | Hydrogen | Chemical energy | Several months or longer | Liquid hydro-gen evaporation loss ~3%/day |
Synthetic Fuel Storage | Fuel | Chemical energy | Several months or longer | — | |
Electrochemical energy storage | LIB | Lithium salts | Chemical energy | Several hours to several days | ~97%, self-discharge rate as low as 0.03% |
RFB | Electrolyte | Chemical energy | Several days | 65–80% | |
Thermal energy storage | ATES | Water | Thermal energy | Seasonal (several months) | 67.5–87% |
TTES | Water/water-Gravel | Thermal energy | Seasonal (several months) | 45–65% | |
BTES | Subsurface | Thermal energy | Seasonal (several months) | 40–60% | |
Molten salt energy storage | Molten salts | Thermal energy | Seasonal (several months) | 5–8%/month | |
Gravel thermal storage system | Gravel | Thermal energy | Seasonal (several months) | — | |
LHS | Chemical materials | Chemical energy | Several months or longer | — | |
THS | Chemical materials | Chemical energy | Several months or longer | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Zhou, T.; Wang, T.; Zhang, M.; Zhang, S.; Yang, H. Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization. Energies 2025, 18, 466. https://doi.org/10.3390/en18030466
Zeng Y, Zhou T, Wang T, Zhang M, Zhang S, Yang H. Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization. Energies. 2025; 18(3):466. https://doi.org/10.3390/en18030466
Chicago/Turabian StyleZeng, Yuyang, Tuo Zhou, Tong Wang, Man Zhang, Shuping Zhang, and Hairui Yang. 2025. "Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization" Energies 18, no. 3: 466. https://doi.org/10.3390/en18030466
APA StyleZeng, Y., Zhou, T., Wang, T., Zhang, M., Zhang, S., & Yang, H. (2025). Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization. Energies, 18(3), 466. https://doi.org/10.3390/en18030466