Effect of Changes in Mains Voltage on the Operation of the Low-Power Pellet Boiler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Research Procedures
- 230 V—the voltage defined as nominal (standard) in the EU;
- 207 V—the lowest voltage permitted by the standard;
- 253 V—the highest voltage permitted by the standard.
- Determination of blower fan operating characteristics at three supply voltages;
- Emission and exhaust temperature testing at three voltages;
- Testing the ignition time at three voltages.
2.2.1. Blower Fan Testing
2.2.2. Exhaust and Dust Emission Testing
2.2.3. Testing the Burner Ignition Process at Voltages 207, 230, and 253 V
3. Results
3.1. Blower Fan Performance Characteristics
3.2. Emission Test Results
3.3. Boiler Ignition Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanisławski, R.; Junga, R.; Nitsche, M. Reduction of the CO Emission from Wood Pellet Small-Scale Boiler Using Model-Based Control. Energy 2022, 243, 123009. [Google Scholar] [CrossRef]
- Jach-Nocoń, M.; Pełka, G.; Luboń, W.; Mirowski, T.; Nocoń, A.; Pachytel, P. An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types. Energies 2021, 14, 4465. [Google Scholar] [CrossRef]
- Bala-Litwiniak, A.; Musiał, D. Computational and Experimental Studies of Selected Types of Biomass Combustion in a Domestic Boiler. Materials 2022, 15, 4826. [Google Scholar] [CrossRef]
- Holubčík, M.; Cagáňová, D.; Jandačka, J. Editorial: Environmental Impacts from Small Heating Systems. Front. Energy Res. 2024, 12, 1384163. [Google Scholar] [CrossRef]
- Petlickaitė, R.; Jasinskas, A.; Venslauskas, K.; Navickas, K.; Praspaliauskas, M.; Lemanas, E. Evaluation of Multi-Crop Biofuel Pellet Properties and the Life Cycle Assessment. Agriculture 2024, 14, 1162. [Google Scholar] [CrossRef]
- Vicente, E.; Alves, C. An Overview of Particulate Emissions from Residential Biomass Combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- Wierzbińska, M.; Kita, A. The Impact of Air Pollution on the Number of Diagnosed Respiratory and Cardiovascular Diseases. J. Ecol. Eng. 2024, 25, 167–175. [Google Scholar] [CrossRef]
- Szyszlak-Barglowicz, J.; Zajac, G.; Slowik, T. Research on Emissions from Combustion of Pellets in Agro Biomass Low Power Boiler. Rocz. Ochr. Srodowiska 2017, 19, 715–730. [Google Scholar]
- Morin, B.; Allen, G.; Marin, A.; Rector, L.; Ahmadi, M. Impacts of Wood Species and Moisture Content on Emissions from Residential Wood Heaters. J. Air Waste Manag. Assoc. 2022, 72, 647–661. [Google Scholar] [CrossRef]
- Wang, K.; Masiol, M.; Thimmaiah, D.; Zhang, Y.; Hopke, P.K. Performance Evaluation of Two 25 kW Residential Wood Pellet Boiler Heating Systems. Energy Fuels 2017, 31, 12174–12182. [Google Scholar] [CrossRef]
- Rastvorov, D.V.; Osintsev, K.V.; Toropov, E.V. Influence of Burner Form and Pellet Type on Domestic Pellet Boiler Performance. IOP Conf. Ser. Earth Environ. Sci. 2017, 87, 032034. [Google Scholar] [CrossRef]
- Dula, M.; Kraszkiewicz, A. Theory and Practice of Burning Solid Biofuels in Low-Power Heating Devices. Energies 2025, 18, 182. [Google Scholar] [CrossRef]
- Bolshev, V.; Vinogradov, A.; Jasiński, M.; Sikorski, T.; Leonowicz, Z.; Gono, R. Monitoring the Number and Duration of Power Outages and Voltage Deviations at Both Sides of Switching Devices. IEEE Access 2020, 8, 137174–137184. [Google Scholar] [CrossRef]
- Masoum, M.A.S.; Fuchs, E.F. Chapter 1—Introduction to Power Quality. In Power Quality in Power Systems and Electrical Machines, 2nd ed.; Masoum, M.A.S., Fuchs, E.F., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 1–104. ISBN 978-0-12-800782-2. [Google Scholar]
- Li, R.; Wong, P.; Wang, K.; Li, B.; Yuan, F. Power Quality Enhancement and Engineering Application with High Permeability Distributed Photovoltaic Access to Low-Voltage Distribution Networks in Australia. Prot. Control Mod. Power Syst. 2020, 5, 18. [Google Scholar] [CrossRef]
- Ezhiljenekkha, G.B.; MarsalineBeno, M. Review of Power Quality Issues in Solar and Wind Energy. Mater. Today Proc. 2020, 24, 2137–2143. [Google Scholar] [CrossRef]
- Banaszak, S.; Biegun, M.; Domek, S.; Dworak, P.; Figurowski, D.; Kubicki, M.; Małyszko, O.; Orłowski, P.; Zeńczak, M. Stabilisation of the Power Grid with a Hydrogen Energy Buffer. Environ. Prot. Nat. Resour. 2022, 33, 19–28. [Google Scholar] [CrossRef]
- PN-EN 60038:2012; CENELEC Standard Voltages. PKN: Warsaw, Poland, 2012.
- Holubčík, M.; Čajová Kantová, N.; Jandačka, J.; Čaja, A. The Performance and Emission Parameters Based on the Redistribution of the Amount of Combustion Air of the Wood Stove. Processes 2022, 10, 1570. [Google Scholar] [CrossRef]
- Lasek, J.A.; Matuszek, K.; Hrycko, P. The Influence of Primary Measured Parameters and Electricity Consumption in Automatic Solid Fuels-Fired Boilers on the Seasonal Space Heating Energy Efficiency. Fuel 2022, 313, 122689. [Google Scholar] [CrossRef]
- Ciupek, B.; Urbaniak, R.; Nocoń, A. Emission Models for Selected Harmful Substances Emitted During Low-Temperature Combustion of Wood Pellets. J. Ecol. Eng. 2024, 25, 267–273. [Google Scholar] [CrossRef]
- Wang, K.; Nakao, S.; Thimmaiah, D.; Hopke, P.K. Emissions from In-Use Residential Wood Pellet Boilers and Potential Emissions Savings Using Thermal Storage. Sci. Total Environ. 2019, 676, 564–576. [Google Scholar] [CrossRef]
- Toscano, G.; Duca, D.; Amato, A.; Pizzi, A. Emission from Realistic Utilization of Wood Pellet Stove. Energy 2014, 68, 644–650. [Google Scholar] [CrossRef]
- Vicente, E.D.; Vicente, A.M.; Evtyugina, M.; Carvalho, R.; Tarelho, L.A.C.; Paniagua, S.; Nunes, T.; Otero, M.; Calvo, L.F.; Alves, C. Emissions from Residential Pellet Combustion of an Invasive Acacia Species. Renew. Energy 2019, 140, 319–329. [Google Scholar] [CrossRef]
- Venturini, E.; Vassura, I.; Agostini, F.; Pizzi, A.; Toscano, G.; Passarini, F. Effect of Fuel Quality Classes on the Emissions of a Residential Wood Pellet Stove. Fuel 2018, 211, 269–277. [Google Scholar] [CrossRef]
- Vicente, E.D.; Vicente, A.M.; Evtyugina, M.; Tarelho, L.A.C.; Almeida, S.M.; Alves, C. Emissions from Residential Combustion of Certified and Uncertified Pellets. Renew. Energy 2020, 161, 1059–1071. [Google Scholar] [CrossRef]
- Palma, A.; Gallucci, F.; Papandrea, S.; Carnevale, M.; Paris, E.; Vincenti, B.; Salerno, M.; Di Stefano, V.; Proto, A.R. Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler. Fire 2023, 6, 288. [Google Scholar] [CrossRef]
- Pizzi, A.; Foppa Pedretti, E.; Duca, D.; Rossini, G.; Mengarelli, C.; Ilari, A.; Mancini, M.; Toscano, G. Emissions of Heating Appliances Fuelled with Agropellet Produced from Vine Pruning Residues and Environmental Aspects. Renew. Energy 2018, 121, 513–520. [Google Scholar] [CrossRef]
- Maj, G.; Szyszlak-Bargłowicz, J.; Zając, G.; Słowik, T.; Krzaczek, P.; Piekarski, W. Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process. Energies 2019, 12, 4383. [Google Scholar] [CrossRef]
- Obidziński, S.; Joka Yildiz, M.; Dąbrowski, S.; Jasiński, J.; Czekała, W. Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis. Energies 2022, 15, 9427. [Google Scholar] [CrossRef]
- Adam, R.; Zeng, T.; Röver, L.; Schneider, P.; Werner, H.; Birnbaum, T.; Lenz, V. Long-Term Emission Demonstration Using Pretreated Urban Non-Woody Biomass Residues as Fuel for Small Scale Boilers. Renew. Energy 2024, 237, 121815. [Google Scholar] [CrossRef]
- Verma, V.K.; Bram, S.; Delattin, F.; De Ruyck, J. Real Life Performance of Domestic Pellet Boiler Technologies as a Function of Operational Loads: A Case Study of Belgium. Appl. Energy 2013, 101, 357–362. [Google Scholar] [CrossRef]
- Venturini, E.; Vassura, I.; Zanetti, C.; Pizzi, A.; Toscano, G.; Passarini, F. Evaluation of Non-Steady State Condition Contribution to the Total Emissions of Residential Wood Pellet Stove. Energy 2015, 88, 650–657. [Google Scholar] [CrossRef]
- Win, K.M.; Persson, T. Emissions from Residential Wood Pellet Boilers and Stove Characterized into Start-up, Steady Operation, and Stop Emissions. Energy Fuels 2014, 28, 2496–2505. [Google Scholar] [CrossRef]
- Polonini, L.F.; Petrocelli, D.; Parmigiani, S.P.; Lezzi, A.M. Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study. Energies 2019, 12, 590. [Google Scholar] [CrossRef]
- Holubčík, M.; Čajová Kantová, N.; Nosek, R.; Nemec, P.; Jandačka, J. Design Modification of the Retort Burner for Phytomass in a Small Heat Source. Arab. J. Sci. Eng. 2024, 1–11. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, P.; Nie, Y.; Shi, Y.; Yang, H.; Wu, D.; Rong, X.; Ma, R. How to Improve Pollutant Emission Performances of Household Biomass Cookstoves: A Review. Energy Build. 2023, 295, 113316. [Google Scholar] [CrossRef]
- Deng, M.; Nie, Y.; Yuan, Y.; Ma, R.; Shan, M.; Yang, X. The Impact of Oxygen Content in the Primary Air Supply on Fuel Burning Rate and Pollutant Emissions in a Forced-Draft Biomass Stove. Fuel 2022, 321, 124129. [Google Scholar] [CrossRef]
- Sungur, B.; Basar, C. Experimental Investigation of the Effect of Supply Airflow Position, Excess Air Ratio and Thermal Power Input at Burner Pot on the Thermal and Emission Performances in a Pellet Stove. Renew. Energy 2023, 202, 1248–1258. [Google Scholar] [CrossRef]
- Álvarez-Murillo, A.; González González, J.F.; Piquer Carapeto, J.; Nogales-Delgado, S. Control System Modification of a 5-kW Pellet Stove: Study and Analysis. Appl. Sci. 2024, 14, 8224. [Google Scholar] [CrossRef]
- PN-EN 303-5+A1:2023-05; Heating Boilers—Part 5: Heating Boilers for Solid Fuels, Manually and Automatically Stoked, Nominal Heat Output of up to 500 kW—Terminology, Requirements, Testing and Marking. PKN: Warsaw, Poland, 2021.
- Recknagel, H.; Sprenger, E.; Schramek, E.-R. Kompendium Ogrzewnictwa i Klimatyzacji: Łącznie z Zagadnieniami Przygotowania Ciepłej Wody i Techniki Chłodniczej; Omni Scala: Wrocław, Poland, 2008; ISBN 83-926833-6-6. [Google Scholar]
- ENplus® ST 1001; ENplus® Wood Pellets—Requirements for Companies. Bioenergy Europe: Brussels, Belgium, 2022.
- ISO 17225-2:2021; Solid Biofuels—Fuel Specifications and Classes. ISO: Geneva, Switzerland, 2021.
- Caposciutti, G.; Barontini, F.; Antonelli, M.; Tognotti, L.; Desideri, U. Experimental Investigation on the Air Excess and Air Displacement Influence on Early Stage and Complete Combustion Gaseous Emissions of a Small Scale Fixed Bed Biomass Boiler. Appl. Energy 2018, 216, 576–587. [Google Scholar] [CrossRef]
- Shan, F.; Lin, Q.; Zhou, K.; Wu, Y.; Fu, W.; Zhang, P.; Song, L.; Shao, C.; Yi, B. An Experimental Study of Ignition and Combustion of Single Biomass Pellets in Air and Oxy-Fuel. Fuel 2017, 188, 277–284. [Google Scholar] [CrossRef]
- Khodaei, H.; Guzzomi, F.; Patiño, D.; Rashidian, B.; Yeoh, G.H. Air Staging Strategies in Biomass Combustion-Gaseous and Particulate Emission Reduction Potentials. Fuel Process. Technol. 2017, 157, 29–41. [Google Scholar] [CrossRef]
- Böhler, L.; Fallmann, M.; Görtler, G.; Krail, J.; Schittl, F.; Kozek, M. Emission Limited Model Predictive Control of a Small-Scale Biomass Furnace. Appl. Energy 2021, 285, 116414. [Google Scholar] [CrossRef]
- Schmidl, C.; Luisser, M.; Padouvas, E.; Lasselsberger, L.; Rzaca, M.; Ramirez-Santa Cruz, C.; Handler, M.; Peng, G.; Bauer, H.; Puxbaum, H. Particulate and Gaseous Emissions from Manually and Automatically Fired Small Scale Combustion Systems. Atmos. Environ. 2011, 45, 7443–7454. [Google Scholar] [CrossRef]
- Dias, J.; Costa, M.; Azevedo, J.L.T. Test of a Small Domestic Boiler Using Different Pellets. Biomass Bioenergy 2004, 27, 531–539. [Google Scholar] [CrossRef]
- Eskilsson, D.; Rönnbäck, M.; Samuelsson, J.; Tullin, C. Optimisation of Efficiency and Emissions in Pellet Burners. Biomass Bioenergy 2004, 27, 541–546. [Google Scholar] [CrossRef]
- Houshfar, E.; Skreiberg, Ø.; Løvås, T.; Todorović, D.; Sørum, L. Effect of Excess Air Ratio and Temperature on NOx Emission from Grate Combustion of Biomass in the Staged Air Combustion Scenario. Energy Fuels 2011, 25, 4643–4654. [Google Scholar] [CrossRef]
- Petrocelli, D.; Lezzi, A.M. CO and NO Emissions from Pellet Stoves: An Experimental Study. IOP Publ. 2014, 501, 012036. [Google Scholar]
- Deng, M.; Li, P.; Shan, M.; Yang, X. Optimizing Supply Airflow and Its Distribution between Primary and Secondary Air in a Forced-Draft Biomass Pellet Stove. Environ. Res. 2020, 184, 109301. [Google Scholar] [CrossRef]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An Overview of Nitrogen Oxides Emissions from Biomass Combustion for Domestic Heat Production. Renew. Sustain. Energy Rev. 2021, 135, 110113. [Google Scholar] [CrossRef]
- Lamberg, H.; Sippula, O.; Tissari, J.; Jokiniemi, J. Effects of Air Staging and Load on Fine-Particle and Gaseous Emissions from a Small-Scale Pellet Boiler. Energy Fuels 2011, 25, 4952–4960. [Google Scholar] [CrossRef]
- Matuszek, K.; Hrycko, P. Converting of the gaseous and particulate matter in the exhaust on reference oxygen-concept application. Ciepłow. Ogrzew. Went. 2015, 46, 43–45. [Google Scholar] [CrossRef]
- Win, K.M.; Persson, T.; Bales, C. Particles and Gaseous Emissions from Realistic Operation of Residential Wood Pellet Heating Systems. Atmos. Environ. 2012, 59, 320–327. [Google Scholar] [CrossRef]
- Paavilainen, J. Characterization of Residential Chimney Conditions for Flue Gas Flow Measurements; Högskolan Dalarna: Falun, Sweden, 2012. [Google Scholar]
- Kang, S.B.; Kim, J.J.; Choi, K.S.; Sim, B.S.; Oh, H.Y. Development of an Air Fuel Control System for a Domestic Wood Pellet Boiler. J. Mech. Sci. Technol. 2013, 27, 1701–1706. [Google Scholar] [CrossRef]
- Lustenberger, D.; Strassburg, J.; Strebel, T.; Mangold, F.; Griffin, T. Simulation Tool for the Development of a Staged Combustion Pellet Stove Controller. Energies 2022, 15, 6969. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
HHV | MJ/kg | 17.33 ± 0.22 |
LHV | MJ/kg | 15.84 ± 0.22 |
Moisture | % | 6.93 ± 0.22 |
Ash | % | 0.24 ± 0.01 |
Carbon | % | 44.22 ± 0.24 |
Hydrogen | % | 6.04 ± 0.20 |
Nitrogen | % | 0.22 ± 0.04 |
Sulphur | % | 0.01 ± 0.001 |
Chlorine | % | 0.017 ± 0.001 |
Oxygen (calculated for 100%) | % | 42.332 |
Voltage | Minimum Burner Power (28%) | Average Burner Power (33%) | Maximum Burner Power (42%) | Maximum Fan Power (100%) |
---|---|---|---|---|
207 V | 670 rpm | 906 rpm | 1242 rpm | 2200 rpm |
230 V | 1000 rpm | 1182 rpm | 1508 rpm | 2310 rpm |
253 V | 1346 rpm | 1568 rpm | 1816 rpm | 2426 rpm |
Parameter | Symbol | Unit | 207 V | 230 V | 253 V |
---|---|---|---|---|---|
Exhaust gas temperature | Tsp | °C | 121.4 | 131.6 | 149.2 |
Carbon dioxide | CO2 | % | 14.8 | 11.3 | 9.8 |
Carbon monoxide | CO | ppm | 25 | 46 | 91 |
Nitrogen oxide | NOx | ppm | 86 | 77 | 101 |
Air–fuel ratio | λ | – | 1.4 | 1.8 | 2.1 |
Oxygen | O2 | % | 5.6 | 9.3 | 10.9 |
Voltage | Ignition Time | Blower Fan Speed for Ignition Airflow (25%) | Blower Fan Speed for Second Stage of Ignition (33%) |
---|---|---|---|
207 V | 206 sec | 500 rpm | 906 rpm |
230 V | 94 sec | 720 rpm | 1182 rpm |
253 V | 428 sec | 1170 rpm | 1568 rpm |
Parameter | Symbol | Unit | 207 V | 230 V | 253 V |
---|---|---|---|---|---|
Carbon dioxide | CO2 | mg/m3 | 54 | 22 | 123 |
Carbon monoxide | CO | mg/m3 | 149 | 127 | 225 |
Nitrogen oxides | NOx | mg/m3 | 86 | 77 | 101 |
Dust | - | mg/m3 | 13 | 16 | 18 |
Parameter | PN-EN 303-5:2021 Class 5 | “Clean Air” |
---|---|---|
CO | <500 mg/m3 | |
OGC | <20 mg/m3 | |
NOx | <200 mg/m3 | |
Efficiency | >87% + log Q | >75% |
Dust | <40 mg/m3 | <20 mg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zając, G.; Gładysz, J.; Szyszlak-Bargłowicz, J. Effect of Changes in Mains Voltage on the Operation of the Low-Power Pellet Boiler. Energies 2025, 18, 498. https://doi.org/10.3390/en18030498
Zając G, Gładysz J, Szyszlak-Bargłowicz J. Effect of Changes in Mains Voltage on the Operation of the Low-Power Pellet Boiler. Energies. 2025; 18(3):498. https://doi.org/10.3390/en18030498
Chicago/Turabian StyleZając, Grzegorz, Jacek Gładysz, and Joanna Szyszlak-Bargłowicz. 2025. "Effect of Changes in Mains Voltage on the Operation of the Low-Power Pellet Boiler" Energies 18, no. 3: 498. https://doi.org/10.3390/en18030498
APA StyleZając, G., Gładysz, J., & Szyszlak-Bargłowicz, J. (2025). Effect of Changes in Mains Voltage on the Operation of the Low-Power Pellet Boiler. Energies, 18(3), 498. https://doi.org/10.3390/en18030498