Semiconductor Material Damage Mechanisms Due to Non-Ionizing Energy in Space-Based Solar Systems
Abstract
:1. Introduction
1.1. Study Objective
1.2. SBS Prototype
2. Semiconductor Damage Mechanism and Assessment
2.1. Assumptions and Limitations
2.1.1. Nuclear Stopping Power
2.1.2. NIEL and DDD
2.2. Method of Assessment
3. Results
3.1. SR-NIEL and Radiation Spectra Predictions
3.2. PV Device Degradations
3.3. Comparison of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffe, P.I.; McSpadden, J.O. Energy Conversion and Transmission Modules for Space Solar Power. Proc. IEEE 2013, 101, 1424–1437. [Google Scholar] [CrossRef]
- Hitchens, T. AFRL’s Arachne Achieves Power Conversion, Chasing Sci-Fi-Esque Space Based Solar Power. BreakingDefense.com. 2021. Available online: https://breakingdefense.com/2021/12/afrls-arachne-achieves-power-conversion-chasing-sci-fi-esque-space-based-solar-power/ (accessed on 15 August 2024).
- Cretì, A.; Prete, P.; Lovergine, N.; Lomascolo, M. Enhanced Optical Absorption of GaAs Near-Band-Edge Transitions in GaAs/AlGaAs Core–Shell Nanowires: Implications for Nanowire Solar Cells. ACS Appl. Nano Mater. 2022, 5, 18149–18158. [Google Scholar] [CrossRef]
- Di Carlo, V.; Prete, P.; Dubrovski, V.; Berdinikov, Y.; Lovergine, N. CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy. ACS Nano Lett. 2017, 17, 4075–4082. [Google Scholar] [CrossRef]
- Li, F.; Xie, X.; Gao, Q.; Tan, L.; Zhou, Y.; Yang, Q.; Ma, J.; Fu, L.; Tan, H.H.; Jagadish, C. Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires. Nanotechnology 2018, 29, 225703. [Google Scholar] [CrossRef]
- Messenger, S.; Burke, E.; Xapsos, M.; Summers, G.; Walters, R.; Jun, I.; Jordan, T. NIEL for heavy ions: An analytical approach. IEEE Trans. Nucl. Sci. 2003, 50, 1919–1923. [Google Scholar] [CrossRef]
- Messenger, S.R.; Jackson, E.; Warner, J. SCREAM: A new code for solar cell degradation prediction using the displacement damage dose approach. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010; pp. 001106–001111. [Google Scholar] [CrossRef]
- Messenger, S.R. Solar Cell Radiation Environment Analysis Models (SCREAM). In Proceedings of the 2017 Space Environment Engineering & Science Applications Workshop (SEESAW), Washington, DC, USA, 8 September 2017; Available online: https://cpaess.ucar.edu/sites/default/files/meetings/2017/documents/Messenger-Scott-SCREAM.pdf (accessed on 25 March 2024).
- Messenger, S.R. Space Solar Cell Radiation Damage Modelling. Naval Research Laboratory. 2010. Available online: https://www.spenvis.oma.be/download/suw2010/presentations/8312_MESSENGER.pdf (accessed on 25 March 2024).
- Inguimbert, C.; Messenger, S. Equivalent Displacement Damage Dose for On-Orbit Space Applications. IEEE Trans. Nucl. Sci. 2012, 59, 3117–3125. [Google Scholar] [CrossRef]
- International Commission on Radiation Units and Measurements (ICRUM). Stopping Powers and Ranges for Protons and Alpha Particles. ICRUM, Bethesda, MD, USA, Rep. no. ICRU 49. 2024. Available online: https://www.icru.org/report/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49/ (accessed on 30 March 2024).
- Insoo Jun, M.; Xapsos, A.; Burke, E.A. Alpha particle nonionizing energy loss (NIEL). IEEE Trans. Nucl. Sci. 2004, 51, 3207–3210. [Google Scholar] [CrossRef]
- Jenkins, P.; Krasowski, M.; Prokop, N.; Walters, R.; Spina, D.; Eskenazi, M.; Skalitzky, R.; Duffey, T.; Davis, B.; Koss, S.; et al. TACSAT-4 solar cell experiment: Advanced solar cell technologies in a high radiation environment. In Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 000009–000012. [Google Scholar] [CrossRef]
- Jenkins, P.; Bentz, D.C.; Barnds, J.; Binz, C.R.; Messenger, S.R.; Warner, J.H.; Krasowski, M.J.; Prokop, N.F.; Spina, D.C.; O’Neill, M.; et al. TacSat-4 Solar Cell Experiment: Two Years in Orbit. In Proceedings of the 10th European Space Power Conference (ESPC), Noordwijkerhout, The Netherlands, 13–17 April 2014; Available online: https://www.markoneill.com/ESPC-TacSat-2014.pdf (accessed on 10 April 2024).
- SR-NIEL-7. Screened Relativistic (SR) Treatment for NIEL Dose Nuclear and Electronic Stopping Power Calculator (version 9.5). 2023. Available online: https://www.sr-niel.org/index.php/sr-niel-web-calculators/nuclear-stopping-power-calculator (accessed on 20 March 2024).
- Campesato, R.; Casale, M.; Gervasi, M.; Gombia, E.; Greco, E.; Kingma, A.; Rancoita, P.G.; Rozza, D.; Tacconi, M. Non-Ionising Energy Loss (NIEL) Calculation Software and Verification. European Space Agency, 2017. Available online: https://indico.esa.int/event/188/contributions/1667/attachments/1548/1781/PGR_Slides_ESA_7_3_2017.pdf (accessed on 20 January 2024).
- Crosby, N.; Heynderickx, D.; Jiggens, P.; Aran, A.; Sanahuja, B.; Truscott, P.; Lei, F.; Jacobs, C.; Poedts, S.; Gabriel, S.; et al. SEPEM: A tool for statistical modeling the solar energetic particle environment. Space Weather 2015, 13, 406–426. [Google Scholar] [CrossRef]
- Xapsos, M.; Barth, J.; Stassinopoulos, E.; Messenger, S.; Walters, R.; Summers, G.; Burke, E. Characterizing solar proton energy spectra for radiation effects applications. IEEE Trans. Nucl. Sci. 2000, 47, 2218–2223. [Google Scholar] [CrossRef]
- Xapsos, M.A.; Stauffer, C.; Jordan, T.; Barth, J.L.; Mewaldt, R.A. Model for Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra. IEEE Trans. Nucl. Sci. 2007, 54, 1985–1989. [Google Scholar] [CrossRef]
- Jiggens, P.; Varotsou, A.; Truscott, P.; Heynderickx, D.; Lei, F.; Evans, H.; Daly, E. The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model. IEEE Trans. Nucl. Sci. 2018, 65, 698–711. [Google Scholar] [CrossRef]
- Leroy, C.; Racoita, P. Radiation and Particle Interactions. In Principles of Radiation Interaction in Matter and Detection, 4th ed.; World Scientific Press: Hackensack, NJ, USA, 2016; ch. 1; pp. 3–51. [Google Scholar]
- Leroy, C.; Racoita, P. Electromagnetic Interaction of Charged Particles in Matter. In Principles of Radiation Interaction in Matter and Detection, 4th ed.; World Scientific Press: Hackensack, NJ, USA, 2016; ch. 2; pp. 52–206. [Google Scholar]
- Logan, J.; Webster, P.; Woller, K.; Morath, C.; Short, M. Understanding the fundamental driver of semiconductor radiation tolerance with experiment and theory. Phys. Rev. Mater. 2022, 6, 084601. [Google Scholar] [CrossRef]
- Leroy, C.; Racoita, P. Radiation Effects and Displacement Damage in Semiconductors. In Principles of Radiation Interaction in Matter and Detection, 4th ed.; World Scientific Press: Hackensack, NJ, USA, 2016; ch. 7; pp. 477–570. [Google Scholar]
- Leroy, C.; Racoita, P. Photon Interaction and Electromagnetic Cascades in Matter. In Principles of Radiation Interaction in Matter and Detection, 4th ed.; World Scientific Press: Hackensack, NJ, USA, 2016; ch. 3; pp. 207–298. [Google Scholar]
- Baur, C.; Gervasi, M.; Nieminen, P.; Pensotti, S.; Rancoita, P.; Tacconi, M. NIEL dose dependence for solar cells irradiated with electrons and protons. In Proceedings of the 14th ICATPP, Villa Olmo, Como, Italy, 23–27 September 2013; Scientific: Singapore, 2013; pp. 698–713. [Google Scholar] [CrossRef]
- Lang, R.; Schön, J.; Lefèvre, J.; Boizot, B.; Dimroth, F.; Lackner, D. Radiation hardness and post irradiation regeneration behavior of GaInAsP solar cells. Sol. Energy Mater. Sol. Cells 2020, 211, 110551. [Google Scholar] [CrossRef]
- White, P.A. A coverglass for GaAs solar cells. In Proceedings of the IEEE Conference on Photovoltaic Specialists, Kissimmee, FL, USA, 21–25 May 1990; Volume 2, pp. 1300–1303. [Google Scholar] [CrossRef]
- Campesato, R.; Greco, E.; Casale, M.; Gervasi, M.; Rancoita, P.; Rozza, D.; Tacconi, M.; Gombia, E.; Kingma, A.; Baur, C. NIEL DOSE Analysis on Triple Junction Cells 30% Efficient and Related Single Junctions. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 541–544. [Google Scholar] [CrossRef]
- Nowlan, M.J.; Tobin, S.P.; Darkazalli, G. Direct cover glass bonding to GaAs and GaAs/Ge solar cells. In Proceedings of the Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 7–11 October 1991; Volume 2, pp. 1480–1484. [Google Scholar] [CrossRef]
- Vette, J.I. The AE-9 Trapped Electron Model Environment; NSSDC/WDC-A-R&S 91-24. 2023. Available online: https://www.spenvis.oma.be/help/background/traprad/traprad.html#TREPOP (accessed on 20 March 2024).
- Woike, T.W. Radiation-Induced Power Degradation for GaAs/Ge Solar Arrays. 1992 Small Satellite Conference. 1992. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2754&context=smallsat (accessed on 23 March 2024).
- Kerslake, T.W.; Gustafson, E.D. On-Orbit Performance Degradation of the International Space Station P6 Photovoltaic Arrays. National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, USA, Rep. no. NASA/TM-2003-212513. 2003. Available online: https://ntrs.nasa.gov/api/citations/20030068268/downloads/20030068268.pdf (accessed on 5 May 2024).
- LeoLabs. Low Earth Orbit Visualization Tool. 2024. Available online: https://platform.leolabs.space/visualization (accessed on 12 November 2024).
- Lozinski, A.R.; Horne, R.; Glauert, S.; Del Zanna, G.; Heynderickx, D.; Evans, H. Solar cell degradation due to proton belt enhancements during electric orbit raising to GEO. Space Weather 2019, 17, 1059–1072. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, A.; Preindl, M.; Fthenakis, V. Semiconductor Material Damage Mechanisms Due to Non-Ionizing Energy in Space-Based Solar Systems. Energies 2025, 18, 509. https://doi.org/10.3390/en18030509
Peters A, Preindl M, Fthenakis V. Semiconductor Material Damage Mechanisms Due to Non-Ionizing Energy in Space-Based Solar Systems. Energies. 2025; 18(3):509. https://doi.org/10.3390/en18030509
Chicago/Turabian StylePeters, Anthony, Matthias Preindl, and Vasilis Fthenakis. 2025. "Semiconductor Material Damage Mechanisms Due to Non-Ionizing Energy in Space-Based Solar Systems" Energies 18, no. 3: 509. https://doi.org/10.3390/en18030509
APA StylePeters, A., Preindl, M., & Fthenakis, V. (2025). Semiconductor Material Damage Mechanisms Due to Non-Ionizing Energy in Space-Based Solar Systems. Energies, 18(3), 509. https://doi.org/10.3390/en18030509