Engineering of Hybrid SiO2@{N-P-Fe} Catalysts with Double-Ligand for Efficient H2 Production from HCOOH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.3. Synthesis of Hybrid Materials
2.4. Catalytic HCOOH-Dehydrogenation Procedure
3. Results
3.1. Synthesis and Characterization of Hybrid Materials
3.2. FADH Catalysis
3.2.1. Evolution of Catalytic-Solution Potential (Eh)
- (i)
- Initially, a slight decrease in Eh occurred in all cases, as shown in Figure 1a–d where the addition of FA, FeII, and NP-ligands resulted in the profiles maintaining their positive values.
- (ii)
- In all cases, the Eh profiles attained negative values, i.e., between −70 and −108 mV, when the poly-phosphine ligand, PP3, was introduced. This was followed by the production of gases (CO2 + H2, as confirmed by the GC-TCD analysis), which was visually evident by the vigorous formation of bubbles.
- (iii)
- After 10 min of gas production (CO2 + H2), the Eh profile was shifted to more negative values and remained in this way for a period of 30–40 min, as shown in Figure 1a–d. As analyzed originally, for the case of the homogeneous Fe catalysts, these negative Eh values signify the formation of active Fe-hydride species [29] that are the key catalytic species. Thus, our data verifies that Eh profiles are a useful tool to monitor the catalytic evolution of the present homogenous and heterogeneous catalytic systems. Noticeably, in Figure 1b,c, an increase in the Eh profile was observed in the heterogeneous systems when approaching the end of the catalytic procedure.
3.2.2. Kinetics of FADH
3.2.3. Continuous Feeding of Formic Acid
Recycling Experiments and Spectroscopy Analysis of the Recovered Materials
3.3. Arrhenius Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solakidou, M.; Theodorakopoulos, M.; Deligiannakis, Y.; Louloudi, M. Double-Ligand Fe, Ru Catalysts: A Novel Route for Enhanced H2 Production from Formic Acid. Int. J. Hydrog. Energy 2020, 45, 17367–17377. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an Energy Carrier: Prospects and Challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Navlani-García, M.; Martis, M.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Mori, K.; Yamashita, H. Investigation of Pd Nanoparticles Supported on Zeolites for Hydrogen Production from Formic Acid Dehydrogenation. Catal. Sci. Technol. 2015, 5, 364–371. [Google Scholar] [CrossRef]
- Dincer, I. Renewable Energy and Sustainable Development: A Crucial Review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Nguyen, K.H.; Kakinaka, M. Renewable Energy Consumption, Carbon Emissions, and Development Stages: Some Evidence from Panel Cointegration Analysis. Renew. Energy 2019, 132, 1049–1057. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R.H. Towards Sustainable Production of Formic Acid. ChemSusChem 2018, 11, 821–836. [Google Scholar] [CrossRef]
- Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic Acid as a Hydrogen Storage Material–Development of Homogeneous Catalysts for Selective Hydrogen Release. Chem. Soc. Rev. 2016, 45, 3954–3988. [Google Scholar] [CrossRef] [PubMed]
- Coffey, R.S. The Decomposition of Formic Acid Catalysed by Soluble Metal Complexes. Chem. Commun. 1967, 923b. [Google Scholar] [CrossRef]
- Gao, Y.; Kuncheria, J.; Puddephatt, R.J.; Yap, G.P.A. An Efficient Binuclear Catalyst for Decomposition of Formic Acid. Chem. Commun. 1998, 2365–2366. [Google Scholar] [CrossRef]
- Fellay, C.; Dyson, P.J.; Laurenczy, G. A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. Angew. Chem. Int. Ed. 2008, 47, 3966–3968. [Google Scholar] [CrossRef]
- Himeda, Y. Highly Efficient Hydrogen Evolution by Decomposition of Formic Acid Using an Iridium Catalyst with 4,4′-Dihydroxy-2,2′-Bipyridine. Green Chem. 2009, 11, 2018. [Google Scholar] [CrossRef]
- Loges, B.; Boddien, A.; Junge, H.; Beller, M. Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2 /O2 Fuel Cells. Angew. Chem. Int. Ed. 2008, 47, 3962–3965. [Google Scholar] [CrossRef] [PubMed]
- Boddien, A.; Loges, B.; Junge, H.; Beller, M. Hydrogen Generation at Ambient Conditions: Application in Fuel Cells. ChemSusChem 2008, 1, 751–758. [Google Scholar] [CrossRef]
- Solakidou, M.; Gemenetzi, A.; Koutsikou, G.; Theodorakopoulos, M.; Deligiannakis, Y.; Louloudi, M. Cost Efficiency Analysis of H2 Production from Formic Acid by Molecular Catalysts. Energies 2023, 16, 1723. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Zhang, Y.; Li, H.; Min, S.; Guo, X.; Zheng, B.; Chen, H.; Anders, A.; Lai, Z.; et al. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN3 -Pincer Ligand. Chem. Asian J. 2016, 11, 1357–1360. [Google Scholar] [CrossRef]
- Onishi, N.; Kanega, R.; Kawanami, H.; Himeda, Y. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid. Molecules 2022, 27, 455. [Google Scholar] [CrossRef]
- Scotti, N.; Psaro, R.; Ravasio, N.; Zaccheria, F. A New Cu-Based System for Formic Acid Dehydrogenation. RSC Adv. 2014, 4, 61514–61517. [Google Scholar] [CrossRef]
- Lu, Q.; Yu, H.; Fu, Y. Computational Study of Formic Acid Dehydrogenation Catalyzed by AlIII –Bis(Imino)Pyridine. Chem. A Eur. J 2016, 22, 4584–4591. [Google Scholar] [CrossRef]
- Myers, T.W.; Berben, L.A. Aluminium–Ligand Cooperation Promotes Selective Dehydrogenation of Formic Acid to H2 and CO2. Chem. Sci. 2014, 5, 2771–2777. [Google Scholar] [CrossRef]
- Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P.J.; Laurenczy, G.; Ludwig, R.; Beller, M. Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science 2011, 333, 1733–1736. [Google Scholar] [CrossRef]
- Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions. Chem. A Eur. J 2013, 19, 8068–8072. [Google Scholar] [CrossRef] [PubMed]
- Curley, J.B.; Bernskoetter, W.H.; Hazari, N. Additive-Free Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst. ChemCatChem 2020, 12, 1934–1938. [Google Scholar] [CrossRef]
- Anderson, N.H.; Boncella, J.; Tondreau, A.M. Manganese-Mediated Formic Acid Dehydrogenation. Chem. A Eur. J. 2019, 25, 10557–10560. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, L.; Tang, S.-Y.; Lai, D.-M.; Liao, B.; Fu, Y.; Guo, Q.-X. Selective Decomposition of Formic Acid over Immobilized Catalysts. Energy Fuels 2011, 25, 3693–3697. [Google Scholar] [CrossRef]
- Stathi, P.; Deligiannakis, Y.; Avgouropoulos, G.; Louloudi, M. Efficient H2 Production from Formic Acid by a Supported Iron Catalyst on Silica. Appl. Catal. A Gen. 2015, 498, 176–184. [Google Scholar] [CrossRef]
- Gkatziouras, C.; Solakidou, M.; Louloudi, M. Efficient [Fe-Imidazole@SiO2] Nanohybrids for Catalytic H2 Production from Formic Acid. Nanomaterials 2023, 13, 1670. [Google Scholar] [CrossRef]
- Gkatziouras, C.; Solakidou, M.; Louloudi, M. Formic Acid Dehydrogenation over a Recyclable and Self-Reconstructing Fe/Activated Carbon Catalyst. Energy Fuels 2024, 38, 17914–17926. [Google Scholar] [CrossRef]
- Theodorakopoulos, M.; Solakidou, M.; Deligiannakis, Y.; Louloudi, M. Double-Ligand [Fe/PNP/PP3] and Their Hybrids [Fe/SiO2@PNP/PP3] as Catalysts for H2-Production from HCOOH. Energies 2024, 17, 3934. [Google Scholar] [CrossRef]
- Theodorakopoulos, M.; Deligiannakis, Y.; Louloudi, M. Solution-Potential and Solution-Hydrides as Key-Parameters in H2 Production via HCOOH-Dehydrogenation by Fe- and Ru-Molecular Catalysts. Int. J. Hydrog. Energy 2024, 58, 1608–1617. [Google Scholar] [CrossRef]
- Solakidou, M.; Deligiannakis, Y.; Louloudi, M. Heterogeneous Amino-Functionalized Particles Boost Hydrogen Production from Formic Acid by a Ruthenium Complex. Int. J. Hydrog. Energy 2018, 43, 21386–21397. [Google Scholar] [CrossRef]
- Stathi, P.; Deligiannakis, Y.; Louloudi, M. Co-Catalytic Enhancement of H2 Production by SiO2 Nanoparticles. Catal. Today 2015, 242, 146–152. [Google Scholar] [CrossRef]
- Capeletti, L.B.; Baibich, I.M.; Butler, I.S.; Dos Santos, J.H.Z. Infrared and Raman Spectroscopic Characterization of Some Organic Substituted Hybrid Silicas. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Fusè, M.; Rimoldi, I.; Cesarotti, E.; Rampino, S.; Barone, V. On the Relation between Carbonyl Stretching Frequencies and the Donor Power of Chelating Diphosphines in Nickel Dicarbonyl Complexes. Phys. Chem. Chem. Phys. 2017, 19, 9028–9038. [Google Scholar] [CrossRef]
- Fragou, F.; Stathi, P.; Deligiannakis, Y.; Louloudi, M. Safe-by-Design Flame Spray Pyrolysis of SiO2 Nanostructures for Minimizing Acute Toxicity. ACS Appl. Nano Mater. 2022, 5, 8184–8195. [Google Scholar] [CrossRef]
- Kalampounias, A.G. IR and Raman Spectroscopic Studies of Sol–Gel Derived Alkaline-Earth Silicate Glasses. Bull. Mater. Sci. 2011, 34, 299–303. [Google Scholar] [CrossRef]
- Ben Khemis, S.; Burov, E.; Montigaud, H.; Skrelic, D.; Gouillart, E.; Cormier, L. Structural Analysis of Sputtered Amorphous Silica Thin Films: A Raman Spectroscopy Investigation. Thin Solid Film. 2021, 733, 138811. [Google Scholar] [CrossRef]
- Craig, P.J. Vibrational Spectra of Phosphorus Ligand Derivatives of Some Alkyltricarbonyl-π-Cyclopentadienylmolybdenum Compounds. Can. J. Chem. 1970, 48, 3089–3094. [Google Scholar] [CrossRef]
- Saleem, M.; Majeed, M.I.; Nawaz, H.; Iqbal, M.A.; Hassan, A.; Rashid, N.; Tahir, M.; Raza, A.; Ul Hassan, H.M.; Sabir, A.; et al. Surface-Enhanced Raman Spectroscopy for the Characterization of the Antibacterial Properties of Imidazole Derivatives against Bacillus Subtilis with Principal Component Analysis and Partial Least Squares–Discriminant Analysis. Anal. Lett. 2022, 55, 2132–2146. [Google Scholar] [CrossRef]
- Li, G.; Ridd, M.; Larkins, F. An Infrared Study of Formic Acid Adsorption on Co/SiO2 and SiO2 Surfaces. Aust. J. Chem. 1991, 44, 623. [Google Scholar] [CrossRef]
- Theodorakopoulos, M.; Solakidou, M.; Deligiannakis, Y.; Louloudi, M. A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O2. Energies 2021, 14, 481. [Google Scholar] [CrossRef]
- Moussa, Z.; Judeh, Z.M.A.; Ahmed, S.A. Polymer-Supported Triphenylphosphine: Application in Organic Synthesis and Organometallic Reactions. RSC Adv. 2019, 9, 35217–35272. [Google Scholar] [CrossRef]
- Peleg, M.; Normand, M.D.; Corradini, M.G. The Arrhenius Equation Revisited. Crit. Rev. Food Sci. Nutr. 2012, 52, 830–851. [Google Scholar] [CrossRef] [PubMed]
Catalytic System | Vtot (mL) | TONs | TOFs (h−1) | VFA (mL) | Rate (mL/min) |
---|---|---|---|---|---|
Homogeneous | |||||
[NP(Ph)2/FeII/PP3] | 9880 | 26,933 | 5611 | 10 | 37.7 |
[NP(t-Bu)2/FeII/PP3] | 6980 | 19,028 | 4757 | 6 | 42.5 |
Heterogeneous | |||||
[SiO2@NP(Ph)2/FeII/PP3] | 7570 | 20,636 | 5159 | 8 | 58.0 |
[SiO2@NP(t-Bu)2/FeII/PP3] | 7650 | 20,854 | 4465 | 7 | 55.0 |
Catalytic System | Ea (KJ/mol) | Gas Production Rate from FADH (mL/min) |
---|---|---|
[FeII/PP3] | 77.9 | 31.4 |
[NP(t-Bu)2/FeII/PP3] | 54.0 | 42.5 |
[SiO2@NP(t-Bu)2/FeII/PP3] | 50.6 | 55.0 |
[NP(Ph)2/FeII/PP3] | 37.0 | 37.7 |
[SiO2@NP(Ph)2/FeII/PP3] | 29.4 | 58.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotiriou, A.; Aspri, E.; Deligiannakis, Y.; Louloudi, M. Engineering of Hybrid SiO2@{N-P-Fe} Catalysts with Double-Ligand for Efficient H2 Production from HCOOH. Energies 2025, 18, 514. https://doi.org/10.3390/en18030514
Sotiriou A, Aspri E, Deligiannakis Y, Louloudi M. Engineering of Hybrid SiO2@{N-P-Fe} Catalysts with Double-Ligand for Efficient H2 Production from HCOOH. Energies. 2025; 18(3):514. https://doi.org/10.3390/en18030514
Chicago/Turabian StyleSotiriou, Anna, Eleni Aspri, Yiannis Deligiannakis, and Maria Louloudi. 2025. "Engineering of Hybrid SiO2@{N-P-Fe} Catalysts with Double-Ligand for Efficient H2 Production from HCOOH" Energies 18, no. 3: 514. https://doi.org/10.3390/en18030514
APA StyleSotiriou, A., Aspri, E., Deligiannakis, Y., & Louloudi, M. (2025). Engineering of Hybrid SiO2@{N-P-Fe} Catalysts with Double-Ligand for Efficient H2 Production from HCOOH. Energies, 18(3), 514. https://doi.org/10.3390/en18030514