Predictive Modeling of Energy Consumption for Cooling Ventilation in Livestock Buildings: A Machine Learning Approach
Abstract
:1. Introduction
1.1. Current State-of-the-Art
1.2. Energy Demand in Dairy Farms
1.3. Applying IoT and Machine Learning for Energy Management Optimization
2. Materials and Methods
2.1. Description of the Case Study Farm
2.2. Data Acquisition and Processing Framework
2.3. Energy Load Analysis
2.4. Development of the Predictive Model
- is the predicted value;
- T: trend at time t;
- S: seasonal effects at time t;
- E: event holiday at time t;
- F: regression effects at time t for future-known exogenous variables;
- A: auto-regression effects at time t based on past observations;
- L: regression effects at time t for lagged observations of exogenous variables.
2.5. Training and Validation
3. Results and Discussion
3.1. Trend and Seasonality Forecast Analysis
3.2. Yearly Energy Consumption Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bovo, M.; Santolini, E.; Barbaresi, A.; Tassinari, P.; Torreggiani, D. Assessment of Geometrical and Seasonal Effects on the Natural Ventilation of a Pig Barn Using CFD Simulations. Comput. Electron. Agric. 2022, 193, 106652. [Google Scholar] [CrossRef]
- Costantino, A.; Fabrizio, E.; Biglia, A.; Cornale, P.; Battaglini, L. Energy Use for Climate Control of Animal Houses: The State of the Art in Europe. Energy Procedia 2016, 101, 184–191. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Perano, K.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. A Review of Measuring, Assessing and Mitigating Heat Stress in Dairy Cattle. Biosyst. Eng. 2020, 199, 4–26. [Google Scholar] [CrossRef]
- Hut, P.R.; Scheurwater, J.; Nielen, M.; van den Broek, J.; Hostens, M.M. Heat Stress in a Temperate Climate Leads to Adapted Sensor-Based Behavioral Patterns of Dairy Cows. J. Dairy Sci. 2022, 105, 6909–6922. [Google Scholar] [CrossRef]
- Mondaca, M.R. Ventilation Systems for Adult Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 139–156. [Google Scholar] [CrossRef]
- Yan, G.; Li, H.; Shi, Z. Evaluation of Thermal Indices as the Indicators of Heat Stress in Dairy Cows in a Temperate Climate. Animals 2021, 11, 2459. [Google Scholar] [CrossRef]
- Mondaca, M.R.; Cook, N.B. Modeled Construction and Operating Costs of Different Ventilation Systems for Lactating Dairy Cows. J. Dairy Sci. 2019, 102, 896–908. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Brandolese, C.; Grotto, M.; Marinucci, A.; Fossati, N.; Lovarelli, D.; Riva, E.; Provolo, G. Real-Time Automatic Integrated Monitoring of Barn Environment and Dairy Cattle Behaviour: Technical Implementation and Evaluation on Three Commercial Farms. Comput. Electron. Agric. 2024, 216, 108499. [Google Scholar] [CrossRef]
- Collier, R.J.; Dahl, G.E.; VanBaale, M.J. Major Advances Associated with Environmental Effects on Dairy Cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef]
- Barbaresi, A.; Bovo, M.; Torreggiani, D. The Dual Influence of the Envelope on the Thermal Performance of Conditioned and Unconditioned Buildings. Sustain. Cities Soc. 2020, 61, 102298. [Google Scholar] [CrossRef]
- Upton, J.; Humphreys, J.; Groot Koerkamp, P.W.G.; French, P.; Dillon, P.; De Boer, I.J.M. Energy Demand on Dairy Farms in Ireland. J. Dairy Sci. 2013, 96, 6489–6498. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Research Associate, P.; Lee, C.N.; Collier, R.J.; Reno, N. Evaluation of thermal stress indices for cattle. In Proceedings of the 2009 ASABE Annual International Meeting, Reno, NV, USA, 21–24 June 2009. [Google Scholar]
- National Research Council A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971.
- Dikmen, S.; Hansen, P.J. Is the Temperature-Humidity Index the Best Indicator of Heat Stress in Lactating Dairy Cows in a Subtropical Environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Lovarelli, D.; Bovo, M.; Giannone, C.; Santolini, E.; Tassinari, P.; Guarino, M. Reducing Life Cycle Environmental Impacts of Milk Production through Precision Livestock Farming. Sustain. Prod. Consum. 2024, 51, 303–314. [Google Scholar] [CrossRef]
- Frorip, J.; Kokin, E.; Praks, J.; Poikalainen, V.; Ruus, A.; Veermäe, I.; Lepasalu, L.; Schäfer, W.; Mikkola, H.; Ahokas, J. Energy Consumption in Animal Production-Case Farm Study. Agron. Res. 2012, 10, 39–48. [Google Scholar]
- Rossi, P.; Gastaldo, A. Consumi Energetici in Allevamenti Bovini Da Latte. Inf. Agrar. 2012, 3, 45–47. [Google Scholar]
- Shine, P.; Upton, J.; Sefeedpari, P.; Murphy, M.D. Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses. Energies 2020, 13, 1288. [Google Scholar] [CrossRef]
- Hietaharju, P.; Ruusunen, M.; Leiviskä, K. A Dynamic Model for Indoor Temperature Prediction in Buildings. Energies 2018, 11, 1477. [Google Scholar] [CrossRef]
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A Review on Time Series Forecasting Techniques for Building Energy Consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Shine, P.; Scully, T.; Upton, J.; Murphy, M.D. Multiple Linear Regression Modelling of On-Farm Direct Water and Electricity Consumption on Pasture Based Dairy Farms. Comput. Electron. Agric. 2018, 148, 337–346. [Google Scholar] [CrossRef]
- Shine, P.; Scully, T.; Upton, J.; Murphy, M.D. Annual Electricity Consumption Prediction and Future Expansion Analysis on Dairy Farms Using a Support Vector Machine. Appl. Energy 2019, 250, 1110–1119. [Google Scholar] [CrossRef]
- Shine, P.; Murphy, M.D.; Upton, J.; Scully, T. Machine-Learning Algorithms for Predicting on-Farm Direct Water and Electricity Consumption on Pasture Based Dairy Farms. Comput. Electron. Agric. 2018, 150, 74–87. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Rafiee, S.; Akram, A. Application of Artificial Neural Network to Model the Energy Output of Dairy Farms in Iran. Int. J. Energy Technol. Policy 2013, 9, 82–91. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Rafiee, S.; Akram, A.; Komleh, S.H.P. Modeling Output Energy Based on Fossil Fuels and Electricity Energy Consumption on Dairy Farms of Iran: Application of Adaptive Neural-Fuzzy Inference System Technique. Comput. Electron. Agric. 2014, 109, 80–85. [Google Scholar] [CrossRef]
- Triebe, O.; Hewamalage, H.; Pilyugina, P.; Laptev, N.; Bergmeir, C.; Rajagopal, R. NeuralProphet: Explainable Forecasting at Scale. arXiv 2021, arXiv:2111.15397. [Google Scholar]
MAE | RMSE | Loss |
---|---|---|
27.4702 | 38.2081 | 0.0241 |
2022 | 2023 | 2024 | 2025 |
---|---|---|---|
40,475 kWh (*) | 40,909 kWh (*) | 43,995 kWh = 26,294 (*) + 17,700 (**) | 46,431 kWh (**) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez Garcia, C.A.; Tassinari, P.; Torreggiani, D.; Bovo, M. Predictive Modeling of Energy Consumption for Cooling Ventilation in Livestock Buildings: A Machine Learning Approach. Energies 2025, 18, 633. https://doi.org/10.3390/en18030633
Perez Garcia CA, Tassinari P, Torreggiani D, Bovo M. Predictive Modeling of Energy Consumption for Cooling Ventilation in Livestock Buildings: A Machine Learning Approach. Energies. 2025; 18(3):633. https://doi.org/10.3390/en18030633
Chicago/Turabian StylePerez Garcia, Carlos Alejandro, Patrizia Tassinari, Daniele Torreggiani, and Marco Bovo. 2025. "Predictive Modeling of Energy Consumption for Cooling Ventilation in Livestock Buildings: A Machine Learning Approach" Energies 18, no. 3: 633. https://doi.org/10.3390/en18030633
APA StylePerez Garcia, C. A., Tassinari, P., Torreggiani, D., & Bovo, M. (2025). Predictive Modeling of Energy Consumption for Cooling Ventilation in Livestock Buildings: A Machine Learning Approach. Energies, 18(3), 633. https://doi.org/10.3390/en18030633