Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration
Abstract
:1. Introduction
1.1. Literature Review
1.2. Resulting Problem and Contribution of This Paper
2. Materials and Methods
2.1. Linear Optimization Approach
2.2. Data Hierarchical Clustering Approach
2.3. Application Case and Assumptions
- S: ST (solar yield of 433.5 kWh/m2/a) without ATES.
- A: ST with HIT-ATES (injection well temperature of 55 °C).
- B: ST with HIT-ATES and HP (DHS supply temperature of 105 °C, COP of 3.4).
- C: ST with LIT-ATES (injection well temperature of 20 °C) and HP (COP of 2.09).
Index | Parameter | Value | Unit |
---|---|---|---|
Number of EHB units | 2 | - | |
Specific fuel cost, wholesale price biomass [40] | 20 | EUR/MWh | |
Specific fuel cost, wholesale price natural gas [39] | 37.5 | EUR/MWh | |
Electricity-related maintenance costs (CHP) | 0–13 | EUR/MWh | |
Heat-related maintenance costs | 0–10 | EUR/MWh | |
Heat capacity of water (around 80 °C) | 4193.7 | J/(kgK) | |
Costs for the purchase from the power grid | 65.83 | EUR/MWh | |
COP of HP of HIT-ATES system (B) | 3.4 | - | |
COP of HP of LIT-ATES system (C) | 2.09 | - | |
Number of drillings of the ATES system (injection and production) | 0–7 | - | |
Specific emission costs | 50 (150) | EUR/MWh | |
Specific emissions for biomass [41] | 27 | kg CO2/MWh | |
Specific emissions for natural gas [41] | 201 | kg CO2/MWh | |
Number of HOB units | 7 | - | |
Simulation horizon | 1095 | - | |
Simulation interval, clustering interval | 8 | h | |
Number of CHP units | 4 | - | |
Number of heat pumps | 2 | - | |
Hourly maintenance costs (CHP) | 12–30 | EUR/h | |
Hourly maintenance costs (HP) | 15 | EUR/h | |
Exergy efficiency of ATES-HP [34,48] | 50 | % | |
Power demand for ATES deep pumping | 18.95 | kW | |
- | Total solar irradiation, Berlin 2023 [35] | 1139 | kWh/m2/a |
- | Total solar irradiation on ST collector area | 1206 | kWh/m2/a |
Solar yield per ST collector area | 433.5 | kWh/m2/a | |
Maximal charging load | 2.8 | MW | |
Maximal discharging load | 2.8 | MW | |
Heat demand of the DHS | 591,000 | MWh | |
Minimal partial load | 0–13 | % | |
Maximal storage capacity | 121 | MWh | |
Density of water (around 80 °C) | 972.8 | kg/m3 | |
- | Temperature difference of heat exchangers | 3 | K |
Hot condensation temperature of ATES-HP | 108 | °C | |
Cold evaporation temperature HIT-ATES-HP | 52 | °C | |
Cold evaporation temperature LIT-ATES-HP | 17 | °C |
3. Results
3.1. Scenario S: ST Without ATES
3.2. Scenario A: ST with HIT-ATES
3.3. Scenario B: ST with HIT-ATES and HP
3.4. Scenario C: ST with LIT-ATES and HP
3.5. Comparison of the Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |||
ATES | aquifer thermal energy storage | ||
BEHG | Brennstoffemissionshandelsgesetz, fuel emission trading act | ||
BTB | Blockheizkraftwerks-, Träger- und Betreibergesellschaft | ||
CCGT | combined cycle gas turbine | ||
CH4 | methane, natural gas | ||
CHP | combined heat and power, cogeneration plant | ||
CO2 | carbon dioxide | ||
DHS | district heating system | ||
DWD | Deutscher Wetterdienst | ||
EHB | electric heat boiler | ||
ETS | (European) Emission Trading System | ||
GFZ | Deutsches GeoForschungsZentrum Potsdam | ||
GTN | Geothermie Neubrandenburg GmbH | ||
HIT | high injection temperature | ||
HOB | heat-only boiler | ||
HP | heat pump | ||
LIT | low injection temperature | ||
MILP | mixed-integer linear programming | ||
nEHS | nationales Emissionshandelssystem, national emission trading system | ||
OCGT | open cycle gas turbine | ||
ScenoCalc | Solar-Keymark-Output-Calculator | ||
TES | thermal energy storage | ||
TPS | thermal power station | ||
Symbols | |||
A | size of solar thermal plant, collector area | (m2) | |
B | quantity of electric heat boiler | (-) | |
C | costs | (EUR) | |
c | specific costs | (EUR/MWh) | |
COP | coefficient of performance | (-) | |
cp | specific heat capacity (of water) | (MWh/kg/K) | |
D | quantity of aquifer thermal energy storage | (drilling) | |
data_fc | final clustered data set | (-) | |
data_o | original data set | (-) | |
data_o_ar | averaged original data set | (-) | |
data_o_ar_sort | descending sorted averaged original data set | (-) | |
data_sort | descending sorted original data set | (-) | |
data_sort_ar | averaged descending sorted original data set | (-) | |
ΔI | duration of an interval | (h) | |
e | specific emission costs | (EUR/t CO2) | |
E | emissions | (t CO2) or (kg CO2) | |
ε | specific emissions | (t CO2/MWh) or (g CO2/kWh) | |
η | efficiency | (-) | |
fc | clustering factor for interval number reduction | (-) | |
H | quantity of heat-only boiler | (-) | |
hd | source heat of aquifer drilling | (MWh/drilling) | |
I | quantity of intervals, simulation horizon | (-) | |
K | quantity of cogeneration plants/CHP | (-) | |
L | quantity of (large) heat pumps | (-) | |
m | specific maintenance costs | (EUR/h) | |
N | decision binary variable | (-) | |
P | electric power | (MW) | |
pd | specific electric power per aquifer drilling | (MW/drilling) | |
ρ | density (of water) | (kg/m3) | |
thermal load | (MW) | ||
qa | specific thermal energy per collector area | (MW/m2) or (W/m2) | |
qd | specific thermal energy per aquifer drilling | (MW/drilling) | |
storage level | (MWh) | ||
storage capacity | (MWh) | ||
S | quantity of thermal energy storages | (-) | |
T | temperature | (K) | |
volumetric flow rate | (m3/h) | ||
X | operating binary variable | (-) | |
Subscripts | |||
a | solar thermal plant, collector area | ||
b | electric heat boiler | ||
el | electric, electricity | ||
ex | exergy | ||
C | cold | ||
cc | charging (for thermal energy storage) | ||
cd | discharging (for thermal energy storage) | ||
d | aquifer thermal energy storage (configuration) | ||
data_o | original data set | ||
data_o_ar | averaged original data set | ||
de | demand of DHS | ||
dd | deep pumping for drilling of ATES | ||
f | fuel | ||
H | hot | ||
h | heat-only boiler | ||
hp | heat pump (for ATES) | ||
i | interval, one time step | ||
k | CHP, cogeneration plant | ||
l | (large) heat pump | ||
ll | lower limit (for ATES temperature) | ||
lo | loss(es) | ||
max | maximal | ||
me | electricity-related maintenance | ||
mh | heat-related maintenance | ||
min | minimal | ||
o | original | ||
op | operating, operational | ||
pp | allocations for electric power purchase | ||
s | thermal energy storage | ||
t | temperature | ||
sort | sorted (from maximum to minimum) | ||
ul | upper limit (for ATES temperature |
Appendix A
Continuous | Discrete |
---|---|
: collector area of ST plant | : binary operating variable of electric heat boilers |
: operating costs of ST | : binary operating variable of heat only boilers |
: operation costs of EHB | : binary operating variable of combined heat and power plants |
: operation costs of ATES | : binary operating variable of heat pumps |
: operation costs of HOB | |
: operation costs of CHP | |
: operation costs of HP | |
: total operation costs | |
: heat supply of EHB | |
: heat supply of HOB | |
: heat supply of CHP | |
: heat supply of HP | |
: charging (negative) or discharging (positive) of the short-term TES | |
: storage level of the TES |
S0 | A1 | A2 | A5* | B1 | B2 | C1 | C2 | |
---|---|---|---|---|---|---|---|---|
DHS heat supply in GWh/a | ||||||||
ST | 15.29 | 42.53 | 69.98 | 124.98 | 42.49 | 69.98 | 57.73 | 91.81 |
CHP 1 | 219.36 | 224.94 | 227 | 235.86 | 224.96 | 226.67 | 224.88 | 222.73 |
CHP 2–4 | 139.2 | 140.75 | 144.04 | 162.25 | 140.74 | 143.34 | 140.4 | 135.22 |
HOB | 210.7 | 191.99 | 174.94 | 141.11 | 184.64 | 161.69 | 133.51 | 80.41 |
EHB | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
HP | 6.4 | 6.86 | 7.22 | 7.36 | 6.87 | 6.78 | 6.52 | 4.95 |
ATES | 0 | −16.12 | −32.24 | −80.61 | −8.76 | −17.51 | 27.91 | 55.82 |
Surplus 1 | +0.03 | +16.15 | +32.28 | +80.64 | +8.79 | +17.54 | −27.88 | −55.79 |
Heat production shares in % | ||||||||
ST | 2.59 | 7.19 | 11.84 | 21.15 | 7.19 | 11.84 | 9.77 | 15.53 |
CHP 1 | 37.11 | 38.06 | 38.41 | 39.91 | 38.06 | 38.35 | 38.05 | 37.68 |
CHP 2–4 | 23.55 | 23.81 | 24.37 | 27.45 | 23.81 | 24.25 | 23.75 | 22.88 |
HOB | 35.65 | 32.48 | 29.6 | 23.87 | 31.24 | 27.36 | 22.59 | 13.6 |
EHB | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
HP | 1.08 | 1.16 | 1.22 | 1.25 | 1.16 | 1.15 | 1.1 | 0.84 |
Renewable | 40.8 | 46.43 | 51.49 | 62.33 | 46.43 | 51.36 | 48.94 | 54.07 |
CO2 emissions in thousand t CO2 | ||||||||
CHP 1 | 10.86 | 11.13 | 11.24 | 11.68 | 11.14 | 11.22 | 11.13 | 11.03 |
CHP 2–4 | 59.9 | 60.57 | 61.98 | 69.82 | 60.56 | 61.68 | 60.41 | 58.18 |
HOB | 44.24 | 40.23 | 36.57 | 29.33 | 38.65 | 33.74 | 27.79 | 16.67 |
EHB | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
HP | 0.48 | 0.53 | 0.55 | 0.57 | 0.53 | 0.52 | 0.5 | 0.38 |
ATES | 0 | 0.66 | 1.31 | 3.28 | 3.8 | 7.59 | 17.27 | 34.53 |
Total | 115.5 | 113.13 | 111.67 | 114.68 | 114.7 | 114.78 | 117.11 | 120.81 |
Specific CO2 emissions in kg/MWh CO2 | ||||||||
CHP 1 | 49.51 | 49.48 | 49.52 | 49.52 | 49.52 | 49.5 | 49.49 | 49.52 |
CHP 2–4 | 430.32 | 430.34 | 430.3 | 430.32 | 430.3 | 430.31 | 430.27 | 430.26 |
HOB | 209.97 | 209.54 | 209.04 | 207.85 | 209.33 | 208.67 | 208.15 | 207.31 |
EHB | 181.82 | 181.82 | 181.82 | 181.82 | 181.82 | 181.82 | 181.82 | 181.82 |
HP | 75 | 77.26 | 76.18 | 77.45 | 77.15 | 76.7 | 76.69 | 76.77 |
Total | 195.42 | 191.41 | 188.94 | 194.03 | 194.07 | 194.2 | 198.15 | 204.41 |
Operation costs in million EUR | ||||||||
ST | 0.05 | 0.13 | 0.21 | 0.37 | 0.13 | 0.21 | 0.17 | 0.28 |
CHP 1 | −4.44 | −4.43 | −4.44 | −4.56 | −4.43 | −4.45 | −4.5 | −4.73 |
CHP 2–4 | −1.38 | −1.37 | −1.36 | −1.23 | −1.37 | −1.39 | −1.43 | −1.57 |
HOB | 10.47 | 9.52 | 8.66 | 6.94 | 9.15 | 7.99 | 6.58 | 3.95 |
EHB | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 |
HP | 0.24 | 0.25 | 0.27 | 0.27 | 0.25 | 0.25 | 0.23 | 0.18 |
ATES | 0 | 0.27 | 0.53 | 1.34 | 1.48 | 2.95 | 6.71 | 13.43 |
Total | 4.93 | 4.35 | 3.86 | 3.12 | 5.19 | 5.54 | 7.77 | 11.52 |
Specific operation costs in EUR/MWh | ||||||||
ST | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
CHP 1 | −20.22 | −19.7 | −19.56 | −19.33 | −19.7 | −19.65 | −19.99 | −21.24 |
CHP 2–4 | −9.9 | −9.77 | −9.46 | −7.59 | −9.77 | −9.7 | −10.17 | −11.59 |
HOB | 49.7 | 49.6 | 49.48 | 49.2 | 49.56 | 49.4 | 49.27 | 49.06 |
EHB | −85 | −82.89 | −85 | −85 | −82.65 | −85 | −85 | −85 |
HP | 36.76 | 36.92 | 37.02 | 36.07 | 36.83 | 36.58 | 35.96 | 35.35 |
Total | 8.34 | 7.37 | 6.52 | 5.28 | 8.78 | 9.38 | 13.14 | 19.48 |
References
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Ridjan, I.; Mathiesen, B.V.; Hvelplund, F.; Thellufsen, J.Z.; Sorknæs, P. Energy Storage and Smart Energy Systems. Int. J. Sustain. Energy Plan. Manag. 2016, 11, 3–14. [Google Scholar] [CrossRef]
- Verda, V.; Colella, F. Primary energy savings through thermal storage in district heating networks. Energy 2011, 36, 4278–4286. [Google Scholar] [CrossRef]
- Gadd, H.; Werner, S. Daily heat load variations in Swedish district heating systems. Appl. Energy 2013, 106, 47–55. [Google Scholar] [CrossRef]
- Fang, T.; Lahdelma, R. Optimization of combined heat and power production with heat storage based on sliding time window method. Appl. Energy 2016, 162, 723–732. [Google Scholar] [CrossRef]
- Thommessen, C.; Hipp, A.; Scheipers, J.; Roes, J.; Heinzel, A. Short-term Scheduling of Distributed Cogeneration Plants in District Heating Systems. In Proceedings of the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2020), Osaka, Japan, 29 June–3 July 2020; pp. 1201–1212, ISBN 9781713814061. [Google Scholar]
- Verheyen, J.; Schöbel, N.; Thommessen, C.; Roes, J.; Hoster, H. Integration of Heat Pumps and Renewable Heat Suppliers in Optimized Short-term Planning for District Heating Systems. In Proceedings of the 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024), Rhodes, Greece, 30 June–5 July 2024; pp. 1419–1430. [Google Scholar] [CrossRef]
- Siddiqui, S.; Macadam, J.; Barrett, M. The operation of district heating with heat pumps and thermal energy storage in a zero-emission scenario. Energy Rep. 2021, 7, 176–183. [Google Scholar] [CrossRef]
- Guelpa, E.; Verda, V. Thermal energy storage in district heating and cooling systems: A review. Appl. Energy 2019, 252, 113474. [Google Scholar] [CrossRef]
- Ulbjerg, F. Large scale solar heating and pit heat storage in Vojens and Gram—Figures and experiences from construction, commissioning and start operating. In Proceedings of the 3rd International Solar District Heating Conference, Toulouse, France, 17–18 June 2015; Available online: https://www.solar-district-heating.eu/documents/papers-sdh-conference-toulouse-2015/ (accessed on 11 March 2024).
- Sifnaios, I.; Gauthier, G.; Trier, D.; Fan, J.; Jensen, A.R. Dronninglund water pit thermal energy storage dataset. Sol. Energy 2023, 251, 68–76. [Google Scholar] [CrossRef]
- Fleuchaus, P.; Godschalk, B.; Stober, I.; Blum, P. Worldwide application of aquifer thermal energy storage—A review. Renew. Sustain. Energy Rev. 2018, 94, 861–876. [Google Scholar] [CrossRef]
- Lyden, A.; Brown, C.; Kolo, I.; Falcone, G.; Friedrich, D. Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches. Renew. Sustain. Energy Rev. 2022, 167, 112760. [Google Scholar] [CrossRef]
- Pellegrini, M.; Bloemendal, M.; Hoekstra, N.; Spaak, G.; Andreu Gallego, A.; Rodriguez Comins, J.; Grotenhuis, T.; Picone, S.; Murrell, A.; Steeman, H. Low carbon heating and cooling by combining various technologies with Aquifer Thermal Energy Storage. Sci. Total Environ. 2019, 665, 1–10. [Google Scholar] [CrossRef]
- Miglani, S.; Orehounig, K.; Carmeliet, J. Design and optimization of a hybrid solar ground source heat pump with seasonal regeneration. Energy Procedia 2017, 122, 1015–1020. [Google Scholar] [CrossRef]
- Miglani, S.; Orehounig, K.; Carmeliet, J. Integrating a thermal model of ground source heat pumps and solar regeneration within building energy system optimization. Appl. Energy 2018, 218, 78–94. [Google Scholar] [CrossRef]
- Renaldi, R.; Friedrich, D. Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Appl. Energy 2019, 236, 388–400. [Google Scholar] [CrossRef]
- Reed, A.; Novelli, A.; Doran, K.; Ge, S.; Lu, N.; McCartney, J. Solar district heating with underground thermal energy storage: Pathways to commercial viability in North America. Renew. Energy 2018, 126, 1–13. [Google Scholar] [CrossRef]
- Xu, J.; Wang, R.; Li, Y. A review of available technologies for seasonal thermal energy storage. Sol. Energy 2014, 103, 610–638. [Google Scholar] [CrossRef]
- AlZahrani, A.A.; Dincer, I. Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications. J. Energy Resour. Technol. 2015, 138, 011901. [Google Scholar] [CrossRef]
- Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; van Gaans, P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M. Thermal performance and heat transport in aquifer thermal energy storage. Hydrogeol. J. 2013, 22, 263–279. [Google Scholar] [CrossRef]
- Sommer, W.; Valstar, J.; Leusbrock, I.; Grotenhuis, T.; Rijnaarts, H. Optimization and spatial pattern of large-scale aquifer thermal energy storage. Appl. Energy 2015, 137, 322–337. [Google Scholar] [CrossRef]
- Abuasbeh, M.; Acuña, J.; Lazzarotto, A.; Palm, B. Long term performance monitoring and KPIs’ evaluation of Aquifer Thermal Energy Storage system in Esker formation: Case study in Stockholm. Geothermics 2021, 96, 102166. [Google Scholar] [CrossRef]
- Dickinson, J.S.; Buik, N.; Matthews, M.C.; Snijders, A. Aquifer thermal energy storage: Theoretical and operational analysis. Géotechnique 2009, 59, 249–260. [Google Scholar] [CrossRef]
- Godinaud, J.; Loubet, P.; Gombert-Courvoisier, S.; Pryet, A.; Dupuy, A.; Larroque, F. Life Cycle Assessment of an Aquifer Thermal Energy Storage System: Influence of design parameters and comparison with conventional systems. Geothermics 2024, 120, 102996. [Google Scholar] [CrossRef]
- Gonzalez-Ayala, J.; Blázquez, C.S.; Lagüela, S.; Nieto, I.M. Assesment for optimal underground seasonal thermal energy storage. Energy Convers. Manag. 2024, 308, 118394. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Zhou, M.; Song, X.; Shi, Y.; Yi, J.; Zhao, J.; Zhou, Y. Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells. Energy 2024, 294, 130915. [Google Scholar] [CrossRef]
- Beernink, S.; Hartog, N.; Vardon, P.J.; Bloemendal, M. Heat losses in ATES systems: The impact of processes, storage geometry and temperature. Geothermics 2024, 117, 102889. [Google Scholar] [CrossRef]
- Stemmle, R.; Lee, H.; Blum, P.; Menberg, K. City-scale heating and cooling with aquifer thermal energy storage (ATES). Geotherm. Energy 2024, 12, 2. [Google Scholar] [CrossRef]
- Collignon, M.; Klemetsdal, Ø.S.; Møyner, O.; Alcanié, M.; Rinaldi, A.P.; Nilsen, H.; Lupi, M. Evaluating thermal losses and storage capacity in high-temperature aquifer thermal energy storage (HT-ATES) systems with well operating limits: Insights from a study-case in the Greater Geneva Basin, Switzerland. Geothermics 2020, 85, 101773. [Google Scholar] [CrossRef]
- Hirvonen, J.; Rehman, H.; Sirén, K. Techno-economic optimization and analysis of a high latitude solar district heating system with seasonal storage, considering different community sizes. Sol. Energy 2018, 162, 472–488. [Google Scholar] [CrossRef]
- Domschke, W.; Drexl, A.; Klein, R.; Scholl, A. Einführung in Operations Research; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Schellong, W. Analyse und Optimierung von Energieverbundsystemen; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Chiasson, A.D. Geothermal Heat Pump and Heat Engine Systems: Theory and Practice, 1st ed.; Wiley-ASME Press Series; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 309–316. [Google Scholar] [CrossRef]
- DWD Deutscher Wetterdienst. Climate Data Center. Available online: https://cdc.dwd.de/portal/ (accessed on 30 January 2024).
- Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt, Wasserportal Berlin. Oberflächengewässer, Bodenwasser und Grundwasser. Available online: https://wasserportal.berlin.de/start.php (accessed on 2 February 2024).
- Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen. SMARD Marktdaten. Available online: https://www.smard.de/home/downloadcenter/download-marktdaten/ (accessed on 3 January 2024).
- Electricity Maps. Germany Free Data. Available online: https://www.electricitymaps.com/data-portal/germany (accessed on 13 February 2024).
- European Energy Exchange AG. EEX Market Data Natural Gas. Available online: https://www.eex.com/en/ (accessed on 5 January 2024).
- Kruse, M.; Fritsch, D.; Ballenthien, J.; Ernsting, A. Energieerzeugung aus Altholz in Deutschland—Auswirkungen auf Klima und Ressourcen. NABU Bundesverband, Naturschutzbund Deutschland e.V.: Berlin, Germany, 2022; Volume 1, Available online: https://www.nabu.de/imperia/md/content/nabude/biooekonomie/220706_infopapier_altholz_pdf.pdf (accessed on 12 March 2024).
- Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA). Informationsblatt CO2-Faktoren, Bundesförderung für Energie- und Ressourceneffizienz in der Wirtschaft. 2023. Available online: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/eew_infoblatt_co2_faktoren_2024.pdf (accessed on 12 March 2024).
- Bundesamt für Justiz. Brennstoffemissionshandelsgesetz BEHG. § 10 Veräußerung von Emissionszertifikaten [Status: 22-December-2022]. Available online: https://www.gesetze-im-internet.de/behg/__10.html (accessed on 11 March 2024).
- Sandbag. Carbon Price Viewer. Available online: https://sandbag.be/carbon-price-viewer/ (accessed on 29 January 2024).
- Meißner, R.; Neyrinck, J.; Willige, M.; Berberich, M.; Deschaintre, L.; Mangold, D.; Schäfer, K.; Schmidt, T. SCFW—ScenoCalc Fernwärme, Simulations- und Ertragsvorhersagetool für Solarthermie-Anlagen in Wärmenetzen auf der Grundlage des Solar-Keymark-Output-Calculators (ScenoCalc). Forschungsbericht zu den Forschungsvorhaben 0325554A und B. 2017. Available online: https://edocs.tib.eu/files/e01fb17/897250540.pdf (accessed on 31 January 2024).
- Berberich, M.; Deschaintre, L.; Schmidt, T. ScenoCalc Fernwärme, Version 2.0; Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme: Stuttgart, Germany. Available online: https://www.scfw.de/wp-content/uploads/2017/05/SCFW_2.0_Handbuch.pdf (accessed on 31 January 2024).
- Solar Keymark Database. Vitosol 200-T SPX-S of Viessmann Werke GmbH & Co. KG. Licence Number 011-7S2987 R, 29-September-2020. Available online: https://solarkeymark.eu/database/ (accessed on 19 October 2023).
- Hebold, J.; Nair, A.; Bhardwaj, V.; Buse, C. Machbarkeitsstudie Aquiferspeicher Adlershof, Feasibility Study Commissioned by BTB Berlin; Geothermie Neubrandenburg GmbH, Deutsches GeoForschungsZentrum Potsdam: Neubrandenburg, Germany, 2023; Provided by BTB Berlin GmbH, Germany. [Google Scholar]
- Esen, H.; Inalli, M.; Esen, M.; Pihtili, K. Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers. Build. Environ. 2007, 42, 3606–3615. [Google Scholar] [CrossRef]
- Verheyen, J.; Thommessen, C.; Roes, J.; Hoster, H. Solar Thermal Integration into District Heating Systems through Seasonal Aquifer Thermal Energy Storage. In Proceedings of the 19th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES 2025), Rome, Italy, 8–12 September 2024. [Google Scholar]
Index | Supply Plant | Total Nominal Loads (MW) | ||||
---|---|---|---|---|---|---|
Type | Units | Source | ||||
CHP 1 | TPS | 1 | Biomass | 20 | 30 | 55 |
CHP 2 | Engine | 9 | Natural gas | 2.93 | 3.08 | 6.59 |
CHP 3 | Engine | 1 | Natural gas | 0.42 | 0.51 | 1.07 |
CHP 4 | Engine | 1 | Natural gas | 0.8 | 0.86 | 1.89 |
HOB 1 | HOB | 2 | Natural gas | - | 18.5 | 20.7 |
HOB 2 | HOB | 3 | Natural gas | - | 33 | 36.4 |
HOB 3 | HOB | 2 | Natural gas | - | 20 | 20.62 |
HOB 4 | HOB | 1 | Natural gas | - | 10 | 10.42 |
HOB 5 | HOB | 2 | Natural gas | - | 2 | 2.2 |
HOB 6 | HOB | 10 | Natural gas | - | 2.76 | 3.06 |
HOB 7 | HOB | 1 | Natural gas | - | 0.96 | 1.42 |
EHB 1 | EHB | 2 | Electricity | 3.3 | 3.3 | - |
EHB 2 | EHB | 1 | Electricity | 0.44 | 0.44 | - |
HP 1 | HP | 2 | River water | 1.72 | 4.3 | - |
HP 2 | HP | 1 | Process heat | 0.19 | 1.03 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verheyen, J.; Thommessen, C.; Roes, J.; Hoster, H. Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration. Energies 2025, 18, 645. https://doi.org/10.3390/en18030645
Verheyen J, Thommessen C, Roes J, Hoster H. Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration. Energies. 2025; 18(3):645. https://doi.org/10.3390/en18030645
Chicago/Turabian StyleVerheyen, Joana, Christian Thommessen, Jürgen Roes, and Harry Hoster. 2025. "Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration" Energies 18, no. 3: 645. https://doi.org/10.3390/en18030645
APA StyleVerheyen, J., Thommessen, C., Roes, J., & Hoster, H. (2025). Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration. Energies, 18(3), 645. https://doi.org/10.3390/en18030645