Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis
Abstract
:1. Introduction
2. Geological Setting
3. Geophysical Data
4. Methods
5. Analysis of the Seismic Data
5.1. Data Analysis
5.2. Structural Analysis
5.3. BSR Analysis
6. Discussion
6.1. Regional Models
6.2. Gas Hydrate versus Geological Features
7. Conclusions
- A complex structural setting of the sedimentary prism and the gas hydrate reservoir was defined by the structural interpretation of the depth migrated seismic images. TFS1 and TFS, characterized by transtensive and compressive movements respectively, border the morphological high corresponding to the central part of the reservoir. Moreover, a secondary fault system (s-FS), probably controlled by TFS1, borders the western side of the reservoir.
- The source of a gravitational instability, well recognised on the morpho-bathymetry image, is associated to the tectonic activity of a fault segment (part of the TFS1) and it likely to be favoured by fluid content coming from gas system.
- The gas hydrate reservoir is characterized by a regional geothermal field of about 37.5 °C/km. As expected, the geothermal gradient shows a slow increase from the inner to the frontal part of the prism. Some local high values (about 40 °C/km) are associated to the mud volcano presences.
- The BSR and the gas hydrate distribution within sediments are strongly controlled by tectonics. High gas concentrations are detected in the central part of the reservoir, where not faults deformation affects the sediments.
- The 3D gas hydrate volume was estimated; the potentiality results in a range of 12 × 109–20 × 109 m3; thus, the free gas volume in standard condition results a range of 1.68 × 1012–2.8 × 1012 m3.
Acknowledgements
References and Notes
- Sloan, E.D., Jr. Clathrate hydrates of Natural Gases; Marcel Dekker, Inc.: New York, NY, USA, 1998; p. 705. [Google Scholar]
- Shipley, T.H.; Houston, M.H.; Buffler, R.T.; Shaub, F.J.; McMillen, K.J.; Ladd, J.W.; Worzel, J.L. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bulletin 1979, 63, 2204–2213. [Google Scholar]
- Collet, T.S.; Dallimore, S.R. Permafrost-Associated Gas Hydrate. In Natural Gas Hydrate in Oceanic and Permafrost Environments; Max, D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 43–60. [Google Scholar]
- Ewing, J.J.; Hollister, C.H. Regional aspects of deep sea drilling in the western North Atlantic. DSDP 1972, 11, 951–973. [Google Scholar]
- MacKay, M.E.; Jarrard, R.D.; Westbrook, G.K.; Hyndman, R.D. Origin of bottom simulating reflectors: Geophysical evidence from the Cascadia accretionary prism. Geology 1994, 22, 459–462. [Google Scholar] [CrossRef]
- Holbrook, W.S.; Hoskins, H.; Wood, W.T.; Stephen, R.A.; Lizarralde, D. Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling. Science 1996, 273, 1480–1483. [Google Scholar] [CrossRef] [PubMed]
- Kvenvolden, K.A. Methane hydrate—A major reservoir of carbon in the shallow geosphere? Chem. Geol. 1988, 71, 41–51. [Google Scholar] [CrossRef]
- Singh, S.C.; Minshull, T.A.; Spence, G.D. Velocity structure of a gas hydrate reflector. Science 1993, 260, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Milkov, A.V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Sci. Rev. 2004, 66, 183–197. [Google Scholar]
- Mienert, J.; Posewang, J.; Baumann, M. Gas hydrates along the northeastern Atlantic Margin; possible hydrate-bound margin instabilities and possible release of methane. In Gas Hydrates; Relevance to World Margin Stability and Climate Change; Henriet, J.P., Mienert, J., Eds.; Geological Society Special Publication: London, UK, 1998; Volume 137, pp. 275–291. [Google Scholar]
- Kastner, M. Gas hydrate in convergent margins: formation, occurrence, geochemistry, and global significance. In Natural Gas Hydrates: Occurrence, Distribution, and Detection; Paull, C.K., Dillon, W.P., Eds.; American Geophysical Union: Washington, DC, USA, 2001; pp. 67–86. [Google Scholar]
- Archer, D.; Buffett, B.; Brovkinc, V. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Geophysics 2008, 106, 1–6. [Google Scholar]
- Haq, U.B. Gas hydrates: Greenhouse Nightmare? Energy Panacea or Pipe Dream? Geol. Soc. Am. 1998, 8, 1–6. [Google Scholar]
- Sloan, E.D., Jr. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Natural Gas Hydrates: Occurrence, Distribution, and Detection (Geophysical Monograph); Paull, C.K.; Dillon, W.P. (Eds.) American Geophysical Union: Washington, DC, USA, 2001; Volume 124.
- Xu, W.; Ruppel, G. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. J. Geophys. Res. 1999, 104, 5081–5095. [Google Scholar] [CrossRef]
- Roberts, H.H.; Hardage, B.A.; Shedd, W.W.; Hunt, J., Jr. Seafloor reflectivity—An important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. Lead. Edge 2006, 25, 620–628. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, A.T.S.; Liu, C.S.; Chen, G.Y.; Liao, W.Z.; Schnurle, P. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Mar. Pet. Geol. 2008, 26, 1118–1131. [Google Scholar] [CrossRef]
- Milkov, A.V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 2000, 167, 29–42. [Google Scholar] [CrossRef] and references therein.
- Haacke, R.R.; Hyndman, R.D.; Park, K.P.; Yoo, D.G.; Stoian, I.; Schmidt, U. Migration and venting of deep gases into the ocean through hydrate-choked chimneys offshore Korea. Geology 2009, 37, 531–534. [Google Scholar] [CrossRef]
- Ussler, W., III; Paull, C.K. Ion exclusion associated with marine gas hydrate deposits. In Natural Gas Hydrates: Occurrence, Distribution, and Detection; Paull, C.K., Dillon, W.P., Eds.; American Geophysical Union: Washington, DC, USA, 2001; Volume 124, pp. 41–51. [Google Scholar]
- Malinverno, A.; Kastner, M.; Torres, M.E.; Wortmann, U.G. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311). J. Geophys. Res. 2008, 113, B08103. [Google Scholar]
- Tinivella, U.; Accaino, F. Compressional velocity structure and Poisson’s ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica). Mar. Geol. 2000, 164, 13–27. [Google Scholar] [CrossRef]
- Tinivella, U. The seismic response to overpressure versus gas hydrate and free gas concentration. J. Seism. Explor. 2002, 11, 283–305. [Google Scholar]
- Ojha, M.; Sain, K. Appraisal of gas-hydrate/free-gas from VP/VS ratio in the Makran accretionary prism. Mar. Pet. Geol. 2008, 25, 637–644. [Google Scholar] [CrossRef]
- Tinivella, U. A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll. Geofis. Teor. Appl. 1999, 40, 19–30. [Google Scholar]
- Ecker, C.; Dvorkin, J.; Nur, A. Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics 2000, 65, 565–573. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A.; Gei, D.; Carcione, M.J. Elastic velocity models for gas-hydrate-bearing sediments-a comparison. Geophys. J. Int. 2004, 159, 573–590. [Google Scholar] [CrossRef]
- Lee, W.M.; Waite, W.F. Estimating pore-space gas hydrate saturations from well logacoustic data. Geochem. Geophys. Geosyst. 2008, 9, 1–8. [Google Scholar]
- Tinivella, U.; Accaino, F.; Della Vedova, B. Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula. Geo-Mar. Lett. 2008, 28, 97–106. [Google Scholar] [CrossRef]
- Pankhurst, R.J. The Paleozoic and Andean magmatic arcs of West Antarctica and southern South America. In Plutonism from Antarctica to Alaska; Kay, S.M., Rapela, C.W., Eds.; Geological Society of Amer: Boulder, CO, USA, 1990; Volume 241, pp. 1–7. [Google Scholar]
- Larter, R.D.; Barker, P.F. Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading: Forces on a young subducting plate. J. Geophys. Res. 1991, 96, 19583–19607. [Google Scholar] [CrossRef]
- GRAPE Team. Preliminary results of seismic reflection investigations and associated geophysical studies in the area of the Antarctic Peninsula. Antarct. Sci. 1990, 2, 223–234. [Google Scholar]
- Kim, Y.; Kim, H.S.; Larter, R.D.; Camerlenghi, A.; Gambôa, L.A.P.; Rudowski, S. Tectonic deformation in the upper crust and sediments at the South Shetland Trench. In Geology and Seismic Stratigraphy of the Atlantic Margin; Cooper, A.K., Barker, P.T., Brancolini, G., Eds.; American Geophysical Union: Washington, DC, USA, 1995; Volume 68, pp. 157–166. [Google Scholar]
- Jin, Y.K.; Larter, R.D.; Kim, Y.; Nam, S.H.; Kim, K.J. Post-subduction margin structures along Boyd Strait, Antarctic Peninsula. Tectonophysics 2002, 346, 187–200. [Google Scholar] [CrossRef]
- Dietrich, R.; Rülke, A.; Ihde, J.; Lindner, K.; Miller, H.; Niemeier, W.; Schenke, H.W.; Seeber, G. Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Global Plan Change 2004, 42, 313–321. [Google Scholar] [CrossRef]
- Extract Topography or Gravity Data from Global 1-Minute Grids in ASCII XYZ-Format, version 13.1 for Topography; version 18.1 for Gravity; 2009. Available online: http://topex.ucsd.edu/cgi-bin/get_data.cgi (accessed on 30 December 2010).
- Thomas, C.; Livermore, R.; Pollitz, F. Motion of the Scotia Sea Plates. Geophys. J. Int. 2003, 155, 789–804. [Google Scholar] [CrossRef]
- Barker, P.F. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: Ridge crest-trench interactions. Geol. Soc. Lond. J. 1982, 139, 787–801. [Google Scholar] [CrossRef]
- Lawver, L.A.; Keller, R.A.; Fisk, M.R.; Strelin, J.A. Bransfield Strait, Antarctic Peninsula: Active extension behind a dead arc. In Backarc Basin: Tectonics and Magmatism; Taylor, B., Ed.; Plenum Press: New York, NY, USA, 1995; pp. 315–342. [Google Scholar]
- Barker, P.F.; Dalziel, I.W.D. Progress in geodynamics in the Scotia Arc region. In Geodynamics of the Eastern Pacific Region, Caribbean and Scotia Arcs; Cabre, R., Ed.; American Geophysical Union: Washington, DC, USA, 1983; Volume 9, pp. 137–170. [Google Scholar]
- Lodolo, E.; Camerlenghi, A.; Madrussani, G.; Tinivella, U.; Rossi, G. Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys. J. Int. 2002, 148, 103–119. [Google Scholar] [CrossRef]
- Tinivella, U.; Lodolo, E.; Camerlenghi, A.; Boehm, G. Seismic tomography study of a bottom simulating reflector off the South Shetland Islands (Antarctica). Geol. Soc. Lond. Special Publ. 1998, 137, 141–151. [Google Scholar] [CrossRef]
- Tinivella, U.; Loreto, M.F.; Accaino, F. Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments: the south shetland margin case study. Soc. Geol. Lond. Special Publ. 2009, 319, 103–119. [Google Scholar] [CrossRef]
- Yilmaz, O. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. Series: Investigation in Geophysics. SEG 2001, 10, 2077. [Google Scholar]
- Liu, Z.; Bleisten, N. Migration velocity analysis: Theory and an iterative algorithm. Geophysics 1995, 60, 142–153. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. Free software helps map and display data. Eos Trans. Am. Geophys. Union 1991, 72, 441. [Google Scholar] [CrossRef]
- Tinivella, U.; Accaino, F.; Camerlenghi, A. Gas hydrate and free gas distribution form inversion of seismic data on the South Shetland margin (Antarctica). Mar. Geophys. Res. 2002, 23, 109–123. [Google Scholar] [CrossRef]
- Hamilton, E.L. Vp/Vs and Poisson’s ratios in marine sediments and rocks. J. Acoust. Soc. Am. 1979, 66, 1093–1101. [Google Scholar] [CrossRef]
- Hamilton, E.L. Variations of density and porosity with depth in deep-sea sediments. J. Sediment. Petrol. 1976, 46, 280–300. [Google Scholar]
- Cohen, J.K.; Stockwell, J.W. CWP/SU: Seismic Unix release 35: A Free Package for Seismic Research and Processing; Center for Wave Phenomena, Colorado School of Mines: Golden, CO, USA, 2001. [Google Scholar]
- Bart, P.J.; Anderson, J.B. Seismic expression of depositional sequences associated with expansion and contraction of ice sheets on the northwestern Antarctic Peninsula continental shelf. Geol. Soc. Lond. Special Publ. 1996, 117, 171–186. [Google Scholar] [CrossRef]
- Hillenbrand, C.-D.; Benetti, S.; Ehrmann, W.; Larter, R.D.; Cofaigh, C.Ó.; Dowdeswell, J.A.; Grobe, H.; Graham, A.G.C. Glacial dynamics of the West Antarctic Ice Sheet in the southern Bellingshausen Sea during the last glacial cycle. In Antarctica: A Keystone in a Changing World, Proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, CA, USA, 2007; Cooper, A.K., Barrett, P., Stagg, H., Storey, B., Stump, E., Wise, W., the 10th ISAES Editorial Team, Eds.; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Ganguly, N.; Spence, G.D.; Chapman, N.R.; Hyndman, R.D. Heat flow variations form bottom simulating reflectors on the Cascadia margin. Mar. Geol. 2000, 164, 53–68. [Google Scholar] [CrossRef]
- Dott, R.H., Jr. Dynamics of subaqueus gravity depositional processes. AAPG Bulletin 1963, 47, 104–128. [Google Scholar]
- Dimakis, P.; Elverhoi, A.; Hoeg, K.; Solheim, A.; Harbitz, C.; Laberg, J.S.; Vorren, T.O.; Marr, J. Submarine slope stability on high-latitude glaciated Svalbard-Barents Sea margin. Mar. Geol. 2000, 162, 303–316. [Google Scholar] [CrossRef]
- Murphy, W.F. Acoustic Measures of Partial Gas Saturation in Tight Sandstones. JGR 1989, 89, 1549–1559. [Google Scholar]
- Ewing, J.J.; Hollister, C.H. Regional aspects of deep sea drilling in the western North Atlantic. DSDP 1972, 11, 951–973. [Google Scholar]
- Milkov, A.V.; Sassen, R. Economic geology of offshore gas hydrate accumulations and provinces. Mar. Petrol. Geol. 2002, 19, 1–11. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Loreto, M.F.; Tinivella, U.; Accaino, F.; Giustiniani, M. Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis. Energies 2011, 4, 39-56. https://doi.org/10.3390/en4010039
Loreto MF, Tinivella U, Accaino F, Giustiniani M. Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis. Energies. 2011; 4(1):39-56. https://doi.org/10.3390/en4010039
Chicago/Turabian StyleLoreto, Maria Filomena, Umberta Tinivella, Flavio Accaino, and Michela Giustiniani. 2011. "Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis" Energies 4, no. 1: 39-56. https://doi.org/10.3390/en4010039
APA StyleLoreto, M. F., Tinivella, U., Accaino, F., & Giustiniani, M. (2011). Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis. Energies, 4(1), 39-56. https://doi.org/10.3390/en4010039