Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®
Abstract
:1. Introduction
Parameter | w/w (%) |
---|---|
Proximate analysis | |
Moisture | 4.12 |
Ash | 5.61 |
Fixed carbon | 67.84 |
Volatiles | 22.43 |
Ultimate analysis * | |
Carbon | 75.69 |
Hydrogen | 5.29 |
Nitrogen | 1.58 |
Chloride | 2.35 |
Sulfur | 1.57 |
Ash | 5.61 |
Oxygen | 7.91 |
Gasification Technologies
Gasifier type | Main features |
---|---|
Entrained-flow | Particle size below 0.1 mm |
High operating temperature (>1473 K) | |
High operating pressure (3 to 12 MPa) | |
High oxidant demand | |
Short residence time (0.5 to 10 s) | |
Ash is removed as molten slag | |
Fluidized-bed | Particle size between 6 and 10 mm |
Uniform temperature distribution | |
High operating temperature (1073 to 1323 K) | |
Lower carbon conversion | |
Ash is removed as slag or dry | |
Fixed-bed | Coarse particles (6 to 50 mm) |
Low operating temperature (698 to 1088 K) | |
Low oxidant demand | |
Residence time above 600 s | |
Ash is removed as slag or dry |
2. Process Description
3. Simulation Model
Unit operation | Aspen Plus model | Comments/specifications |
---|---|---|
ASU | RadFrac | LPC: Rigurous distillation model, first stage to separate N2 and O2. SN 40, RR 12.3, BR 41.3, partial-vapor condenser, TSP 0.14 MPa, CPD 0.005 MPa. |
HPC: Rigurous distillation model, second stage to separate N2 and O2. SN 26, RR 0.5, BR 1.0, partial-vapor condenser, TSP 0.6 MPa, CPD 0.05 MPa. | ||
Coal Gasification | RGibbs | Specification of the possible products: CO, CO2, C, H2, H2O, CH4, SO2, H2S, S, CS2, COS, N2, NH3, HCN, O2, NO2, NO3. |
HTS reactor | REquil | Specification of the stoichometric reactions. OP 3.8 MPa, OT 623 K. |
LTS reactor | REquil | Specification of the stoichometric reactions. OP 0.5 MPa, OT 473 K. |
CH3OH absorber | Radfrac | Rigorous absorption of H2S, SO2, COS, NH3, HCN. SN 10, TSP 3.2 MPa. |
3.1. Physical Property Method
3.2. Chemical Reactions
Reaction | Reaction name | Heat of reaction (kJ mol−1) | Reaction number |
---|---|---|---|
Carbon combustion | −393 | R1 | |
Carbon combustion | −221 | R2 | |
Boudouard | +173 | R3 | |
Steam gasification | +131 | R4 | |
Water gas shift | −412 | R5 | |
Steam reforming | −206 | R6 | |
Methanation | −165 | R7 | |
Sulfur combustion | −297 | R8 | |
H2S formation | −207 | R9 | |
CS2 formation | +115 | R10 | |
COS formation | +63 | R11 | |
NH3 formation | −46 | R12 | |
NO2 formation | +66 | R13 | |
COS hydrolysis | −34 | R14 |
4. Results and Discussion
4.1. Thermal Efficiency
Variable | ηTE, % | LHV, MJ kg−1 | LHV, MJ Nm−3 | H2 molar fraction in H2-rich syngas |
---|---|---|---|---|
O2 to carbon ratio † | ||||
0.160 | 34.1 | 55.5 | 20.9 | 0.561 |
0.320 | 42.2 | 69.0 | 15.1 | 0.806 |
0.480 | 52.0 | 79.8 | 13.0 | 0.895 |
0.640 | 62.6 | 83.4 | 12.0 | 0.922 |
0.800 | 60.1 | 92.7 | 10.8 | 0.977 |
0.960 | 54.5 | 97.3 | 10.7 | 0.983 |
Coal slurry concentration (% w/w) ‡ | ||||
86.21 | 61.3 | 61.8 | 10.8 | 0.926 |
75.47 | 60.4 | 87.0 | 10.8 | 0.971 |
65.01 | 59.9 | 95.1 | 10.8 | 0.979 |
56.34 | 59.2 | 97.0 | 11.0 | 0.974 |
50.00 | 58.4 | 93.4 | 11.5 | 0.958 |
LTS reactor temperature (K) ** | ||||
453 | 59.5 | 99.3 | 10.7 | 0.983 |
473 | 59.9 | 95.1 | 10.8 | 0.979 |
498 | 60.4 | 88.6 | 10.8 | 0.971 |
523 | 61.5 | 81.5 | 10.8 | 0.962 |
SDG gas molar ratio in WGS †† | ||||
0.694 | 59.9 | 95.1 | 10.8 | 0.979 |
0.972 | 58.6 | 102.5 | 10.8 | 0.986 |
1.768 | 55.3 | 106.3 | 10.8 | 0.989 |
2.564 | 52.4 | 107.3 | 10.8 | 0.990 |
3.360 | 49.8 | 107.7 | 10.8 | 0.990 |
3.917 | 48.2 | 107.9 | 10.8 | 0.991 |
4.2. Oxygen to Carbon Mass Ratio Effect
4.3. Coal Slurry Concentration Effect
4.4. WGS Reactor Operating Temperature Effect
4.5. Effect of Steam to Dry Gas Molar Ratio
4.6. Optimal Syngas Composition
Component | H2-rich syngas molar fraction |
---|---|
H2O | 6.47 × 10−11 |
H2 | 0.922 |
N2 | 7.13 × 10−3 |
Cl2 | 0.00 |
CO | 9.58 × 10−3 |
CO2 | 6.00 × 10−6 |
CH4 | 0.062 |
H2S | 0.00 |
COS | 0.00 |
NH3 | 1.74 × 10−7 |
HCN | 0.00 |
CH4OH | 4.15 × 10−6 |
5. Conclusions
Abbreviations
ASU | Air separation unit |
HPC | High pressure column |
HTS | High temperature reactor |
LHV | Lower heating value, MJ Nm−3 |
LPC | Low pressure column |
LTS | Low temperature reactor |
SOG | Steam-oxygen gasification |
SDG | Steam to dry gas ratio |
Syn | Syngas |
WGS | Water-gas shift |
Nomenclature
M | Mass flow rate (kg h−1) |
n | Mass fraction |
QAux | Auxiliary power required (MJ h−1) |
ηTE | Thermal efficiency (%) |
ρ | Syngas density (kg m−3) |
References
- Jin, H.; Lu, Y.; Liao, B.; Guo, L.; Zhang, X. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. Int. J. Hydrogen Energy 2010, 35, 7151–7160. [Google Scholar] [CrossRef]
- Ramos, I.A.C.; Montini, T.; Lorenzut, B.; Troiani, H.; Gennari, F.C.; Graziani, M.; Fornasiero, P. Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M = Ru, Pd, Ag) nanocomposites. Catal. Today 2012, 180, 96–104. [Google Scholar] [CrossRef]
- Higman, C.; van der Burgt, M. Gasification, 2nd ed.; Gulf Professional Publishing: Burlington, VT, USA, 2008. [Google Scholar]
- Liu, K.; Cui, Z.; Fletcher, T.H. Coal Gasification. In Hydrogen and Syngas Production and Purification Technologies; Liu, K., Song, C., Subramani, V., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 156–218. [Google Scholar]
- Giunta, P.; Amadeo, N.; Laborde, M. Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell. J. Power Sources 2006, 156, 489–496. [Google Scholar] [CrossRef]
- Dincer, I. Green methods for hydrogen production. Int. J. Hydrogen Energy 2012, 37, 1954–1971. [Google Scholar] [CrossRef]
- Statistical Review of World Energy 2012; Technical Reports for BP Global: London, UK, June 2012; Available online: http://www.bp.com/statisticalreview (accessed on 1 September 2012).
- Stańczyk, K.; Kapusta, K.; Wiatowski, M.; Świądrowski, J.; Smoliński, A.; Rogut, J.; Kotyrba, A. Experimental simulation of hard coal underground gasification for hydrogen production. Fuel 2012, 91, 40–50. [Google Scholar] [CrossRef]
- Jones, R.H.; Thomas, G.J. Materials for the Hydrogen Economy; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- U.S. Department of Energy. Pioneering Gasification Plants. Available online: http://www.fossil.energy.gov/programs/powersystems/gasification/gasificationpioneer.html (accessed on 1 September 2012).
- Ministerio de Minas y Energı́a de Colombia; Instituto Colombiano de Geología y Minería. El Carbón Colombiano: Recursos, Reservas y Calidad; Ingenominas: Bogotá, Colombia, 2004. [Google Scholar]
- Minchener, A.J. Coal gasification for advanced power generation. Fuel 2005, 84, 2222–2235. [Google Scholar] [CrossRef]
- Emun, F.; Gadalla, M.; Majozi, T.; Boer, D. Integrated gasification combined cycle (IGCC) process simulation and optimization. Comput. Chem. Eng. 2010, 34, 331–338. [Google Scholar] [CrossRef]
- Nikoo, M.B.; Mahinpey, N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 2008, 32, 1245–1254. [Google Scholar] [CrossRef]
- Ramzan, N.; Ashraf, A.; Naveed, S.; Malik, A. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenergy 2011, 35, 3962–3969. [Google Scholar] [CrossRef]
- Shen, L.; Gao, Y.; Xiao, J. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass Bioenergy 2008, 32, 120–127. [Google Scholar] [CrossRef]
- Liu, B.; Yang, X.; Song, W.; Lin, W. Process simulation development of coal combustion in a circulating fluidized bed combustor based on aspen plus. Energy Fuels 2011, 25, 1721–1730. [Google Scholar] [CrossRef]
- Robinson, P.J.; Luyben, W.L. Simple dynamic gasifier model that runs in aspen dynamics. Ind. Eng. Chem. Res. 2008, 47, 7784–7792. [Google Scholar] [CrossRef]
- Chiesa, P.; Consonni, S.; Kreutz, T.; Robert, W. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions. Int. J. Hydrogen Energy 2005, 30, 747–767. [Google Scholar] [CrossRef]
- Davison, T.Y. GE Gasification Project Update. In Presented at Gasification 11 Conference, Cagliari, Italy, 8–11 May 2012.
- Smith, A.R.; Klosek, J. A review of air separation technologies and their integration with energy conversion processes. Fuel Process. Technol. 2001, 70, 115–134. [Google Scholar] [CrossRef]
- Vinson, D.R. Air separation control technology. Comput. Chem. Eng. 2006, 30, 1436–1446. [Google Scholar] [CrossRef]
- Cryogenic Air Separation: History and Technological Progress; The Linde Group: Vresova, Czech Republic; Available online: http://www.linde-le.de/process_plants/air_separation_plants/documents/L_2_1_e_09_150dpi.pdf (accessed on 1 September 2012).
- Castle, W.F. Air separation and liquefaction: Recent developments and prospects for the beginning of the new millennium. Int. J. Refrig. 2002, 25, 158–172. [Google Scholar] [CrossRef]
- Damartzis, T.; Zabaniotou, A. Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review. Renew. Sustain. Energy Rev. 2011, 15, 366–378. [Google Scholar] [CrossRef]
- Haldor Topsøe. Sulphur Resistant/Sour Water-Gas Shift Catalyst. Available online: http://www.topsoe.com/business_areas/gasification_based/Processes/~/media/PDF%20files/SSK/topsoe_SSK%20brochure_aug09.ashx (accessed on 1 September 2012).
- Bell, D.; Towler, B. Coal Gasification and Its Applications; Elsevier: Oxford, UK, 2010. [Google Scholar]
- Korens, N.; Simbeck, D.; Wilhelm, D. Process Screening Analysis of Alternative Gas Treating and Sulfur Removal for Gasification; Technical Report for National Energy Technology Laboratory, U.S. Department of Energy: Pittsburgh, PA, USA, December 2002.
- Heil, S.; Brunhuber, C.; Link, K.; Kittel, J.; Meyer, B. Dynamic Modelling of CO2-Removal Units for an IGCC power plant. In Proceedings of the 7th Modelica Conference, Como, Italy, 20–22 September 2009; The Modelica Association: Como, Italy; pp. 77–85.
- Larson, E.D.; Consonni, S.; Katofsky, R.E.; Consulting, N.; Burlington, I.; Iisa, K.; Frederick, W.J., Jr. A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry; Technical Report for Princeton University: Princeton, NJ, USA, 21 December 2006. [Google Scholar]
- Kabadi, V.N.; Danner, R.P. A modified Soave-Redlich-Kwong equation of state for water-hydrocarbon phase equilibria. Ind. Eng. Chem. Process Des. Dev. 1985, 24, 537–541. [Google Scholar] [CrossRef]
- Yuehong, Z.; Hao, W.; Zhihong, X. Conceptual design and simulation study of a co-gasification technology. Energy Convers. Manag. 2006, 47, 1416–1428. [Google Scholar] [CrossRef]
- Chen, C.; Jin, Y.-Q.; Yan, J.-H.; Chi, Y. Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel 2011, in press. [Google Scholar]
- Wang, Y.; Dong, W.; Dong, L.; Yue, J.; Gao, S.; Suda, T.; Xu, G. Production of middle caloric fuel gas from coal by dual-bed gasification technology. Energy Fuels 2010, 24, 2985–2990. [Google Scholar] [CrossRef]
- Wu, Y.X.; Zhang, J.S.; Smith, P.J.; Zhang, H.; Reid, C.; Lv, J.F.; Yue, G.X. Three-dimensional simulation for an entrained flow coal slurry gasifier. Energy Fuels 2010, 24, 1156–1163. [Google Scholar] [CrossRef]
- Choi, Y.C.; Park, T.J.; Kim, J.H.; Lee, J.G.; Hong, J.C.; Kim, Y.G. Experimental studies of 1 ton/day coal slurry feed type oxygen blown, entrained flow gasifier. Korean J. Chem. Eng. 2001, 18, 493–498. [Google Scholar] [CrossRef]
- Seo, H.K.; Park, S.; Lee, J.; Kim, M.; Chung, S.W.; Chung, J.H.; Kim, K. Effects of operating factors in the coal gasification reaction. Korean J. Chem. Eng. 2011, 28, 1851–1858. [Google Scholar] [CrossRef]
- Grol, E.; Yang, W.-C. Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems; Technical Report for National Energy Technology Laboratory, U.S. Department of Energy: Pittsburgh, PA, USA, 5 August 2009.
- Walton, S.M.; He, X.; Zigler, B.T.; Wooldridge, M.S. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proc. Combust. Inst. 2007, 31, 3147–3154. [Google Scholar] [CrossRef]
- Davison, J.; Bressan, L.; Domenichini, R. CO2 capture in coal-based igcc power plants. In Proceedings of the 7th International Conference in Greenhouse Gas Control Technologies, Vancouver, Canada, 5–9 September 2004.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Preciado, J.E.; Ortiz-Martinez, J.J.; Gonzalez-Rivera, J.C.; Sierra-Ramirez, R.; Gordillo, G. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®. Energies 2012, 5, 4924-4940. https://doi.org/10.3390/en5124924
Preciado JE, Ortiz-Martinez JJ, Gonzalez-Rivera JC, Sierra-Ramirez R, Gordillo G. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®. Energies. 2012; 5(12):4924-4940. https://doi.org/10.3390/en5124924
Chicago/Turabian StylePreciado, Jorge E., John J. Ortiz-Martinez, Juan C. Gonzalez-Rivera, Rocio Sierra-Ramirez, and Gerardo Gordillo. 2012. "Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®" Energies 5, no. 12: 4924-4940. https://doi.org/10.3390/en5124924
APA StylePreciado, J. E., Ortiz-Martinez, J. J., Gonzalez-Rivera, J. C., Sierra-Ramirez, R., & Gordillo, G. (2012). Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®. Energies, 5(12), 4924-4940. https://doi.org/10.3390/en5124924