Influence of n-Hexane on in Situ Transesterification of Marine Macroalgae
Abstract
:1. Introduction
Source Material | 14:0 | 16:0 | 18:0 | 18:1 | 18:2 | 18:3 | 20:5 | 20:0 |
---|---|---|---|---|---|---|---|---|
Olive [16,17,18] | 1.30 | 7.00–18.30 | 1.40–3.30 | 55.50–84.50 | 4.00–19.00 | |||
Beef Tallow [16,17,18] | 3.00–6.00 | 25.00–37.00 | 14.00–29.00 | 26.00–50.00 | 0.60–1.80 | 1.00–2.50 | ||
Sunflower [16,17,18] | 3.50–6.50 | 1.30–5.60 | 14.00–43.00 | 44.00–68.70 | ||||
Cottonseed [16,17,18] | 0.80–1.50 | 22.00–24.00 | 2.60–50.00 | 19.00 | 50.00–52.50 | |||
Spent Coffee Grounds [11] | 7.23 | 9.39 | 9.71 | 10.38 | 11.38 | 12.56 |
2. Materials and Methods
2.1. Oil Characterization
2.1.1. Oil Extraction
2.1.2. Analysis of Fatty Acids
2.1.3. Preparation of Fatty Acid Methyl Esters
2.1.4. Analysis of Fatty Acids Methyl Esters
Triglycerides | Retention times (min) |
---|---|
Myristic | 20.23 |
Palmitic | 22.3 |
Stearic | 24.82 |
Oleic | 25.17 |
Linoleic | 25.96 |
Linolenic | 27.16 |
Arachidonic | 31.64 |
2.2. Transesterification Process
2.2.1. Transesterification Process from Sunflower Oil
2.2.2. Transesterification Process from Macroalgae
2.2.3. Analysis of Fatty Acid Methyl Esters
3. Results and Discussion
3.1. Oil Characterization
FAME | Sunflower Oil (%) | Sunflower Oil [6] (%) | Macroalgae Oil (%) | Macroalgae Oil [25] (%) |
---|---|---|---|---|
Tetradecanoic A.M.E. | - | - | 13.5 | 3.5–9.8 |
Palmitic A.M.E. | 8.7 | 8.7 | 14.0 | 9.8–32 |
Stearic A.M.E. | 4.8 | 4.7 | 2.6 | 1.5–2.4 |
Oleic A.M.E. | 35.9 | 30.6 | 41.3 | 8.2–14.9 |
Linoleic A.M.E. | 50.6 | 55.1 | 8.8 | 14.4–21.4 |
Linolenic A.M.E. | - | - | 4.0 | - |
Arachidonic A.M.E. | - | - | 15.8 | 0.1–1.6 |
Triglycerides | Pmi (g/mol) | a M.E.A. Xi (%) | b M.E.A. Xi (%) | a Pmi × Xi (g/mol) | b Pmi × Xi (g/mol) | a Iodine Index | b Iodine Index |
---|---|---|---|---|---|---|---|
Myristic | 723.16 | 0.0 | 13.5 | 0.00 | 97.63 | 0.00 | 0.00 |
Palmitic | 807.32 | 8.7 | 14.0 | 70.24 | 113.02 | 0.00 | 0.00 |
Stearic | 897.48 | 4.8 | 2.6 | 43.08 | 23.33 | 0.00 | 0.00 |
Oleic | 885.43 | 35.9 | 41.3 | 317.87 | 365.68 | 30.87 | 35.52 |
Linoleic | 879.39 | 50.6 | 8.8 | 444.97 | 77.39 | 87.64 | 15.24 |
Linolenic | 873.37 | 0.0 | 4.0 | 0.00 | 34.93 | 0.00 | 10.46 |
Arachidonic | 951.45 | 0.0 | 15.8 | 0.00 | 150.33 | 0.00 | 0.00 |
876.16 | 862.32 | 118.51 | 61.22 |
3.2. Hexane Influence on Transesterification
Raw material | Hexane (mL) | Methanol-oil molar ratio | % NaOH | Time (h) | % FAME | Pm | Iodine Index | % Conversion | |
---|---|---|---|---|---|---|---|---|---|
TEST 1 | 250 g sunflower oil | 0 | 6:1 | 1 (weight of methylic solution) | 2 | 91.7 | 293.43 | 124.07 | 91.97 |
TEST 2 | 250 g sunflower oil | 0 | 6:1 | 1 (weight of oil) | 2 | 97.4 | 293.20 | 124.67 | 86.94 |
TEST 3 | 250 g sunflower oil | 300 | 6:1 | 1 (weight of oil) | 2 | 86.0 | 293.46 | 120.42 | 79.75 |
TEST 4 | 1000 g dried algae | 2500 | 6:1 | 1 (weight of macroalgae) | 4 | 2.8 | 291.80 | 103.19 | 1.65 |
TEST 5 | 1000 g dried algae | 2500 | 300:1 | 1 (weight of macroalgae) | 11 | 17.10 | 286.49 | 33.23 | 11.42 |
TEST 6 | 1000 g dried algae | 0 | 300:1 | 1 (weight of macroalgae) | 11 | 0.1 | 282,95 | 33,3 | 6.08 |
3.3. Comparison of Biodiesel from Sunflower Oil and Macroalgae
4. Conclusions
References
- Zhang, Y.; Dube, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 2003, 90, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Maceiras, R.; Vega, M.; Costa, C.; Ramos, P.; Márquez, M.C. Effect of methanol content on enzymatic production of biodiesel from waste frying oil. Fuel 2009, 88, 2130–2134. [Google Scholar] [CrossRef]
- Sheehan, J.; Dunabay, T.; Benemann, J.; Roessler, P. A look back at the U.S. Department of Energy Acquatyic species program: Biodiesel from algae. Nat. Renew. Energy Lab 1998, 326. [Google Scholar]
- Bozbas, K. Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renew. Sustain. Energy Rev. 2008, 12, 542–552. [Google Scholar] [CrossRef]
- Marchetti, J.M.; Miguel, V.U.; Errazu, A.F. Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 2007, 11, 1300–1311. [Google Scholar] [CrossRef]
- Balat, M. Production of biodiesel from vegetable oils: A survey. Energy Sources Part A 2007, 29, 895–913. [Google Scholar] [CrossRef]
- Beer, T.; Grant, T.; Williams, D.; Watson, H. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles. Atmos. Environ. 2002, 36, 753–763. [Google Scholar] [CrossRef]
- Maceiras, R.; Cancela, A.; Urréjola, S.; Sánchez, A.; Pérez, L. Development of renewable fuels from algae. In Proceeding of the European Meeting on Chemical Industry and Environment, Mechelen, Belgium, 17–19 May 2010; pp. 501–508.
- Phan, A.N.; Phan, T.M. Biodiesel production from waste cooking oils. Fuel 2008, 87, 3490–3496. [Google Scholar] [CrossRef]
- Öner, C.; Altun, Ş. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel Enghien. Appl. Energy 2009, 86, 2114–2120. [Google Scholar] [CrossRef]
- Kondamudi, N.; Mohapatra, S.K.; Misra, M. Spent coffee grounds as a versatile source of green energy. J. Agric. Food Chem. 2008, 56, 11757–11760. [Google Scholar] [CrossRef] [PubMed]
- Sriastava, A.; Prasad, R. Triglyderides-based diesel fuels. Renew. Sustain. Energy Rev. 2000, 4, 111–133. [Google Scholar] [CrossRef]
- Rossel, B. Animal Carcass Fats, Oils and Fats Series; Leatherhead Publishing: Leatherhead, UK, 2001; Volume 2, p. 14. [Google Scholar]
- De los Ríos, A.P.; Hernández Fernández, F.J.; Gómez, D.; Rubio, M.; Víllora, G. Biocatalytic transesterification of sunflower and waste cooking oils in ionic liquid media. Process. Biochem. 2011, 46, 1475–1480. [Google Scholar]
- Kalita, D. Hydrocarbon plant. New source of energy for future. Renew. Sustain. Energy Rev. 2008, 12, 455–471. [Google Scholar] [CrossRef]
- Applewhite, T.H. Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd ed.; John-Wiley & Sons: New York, NY, USA, 1980; Volume 9, pp. 795–811. [Google Scholar]
- Gustone, F.D.; Harwood, J.L.; Padley, F.B. Lipid Handbook, 2nd ed.; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Bajpai, D.; Tyagi, V.K. Biodiesel: Source, production, composition, properties and its benefits. J. Oleo Sci. 2006, 10, 487–502. [Google Scholar] [CrossRef]
- Georgogiannia, K.G.; Kontominasa, M.G.; Pomonisa, P.J.; Avlonitisb, D.; Gergisc, V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process. Technol. 2008, 89, 503–509. [Google Scholar] [CrossRef]
- Qian, J.; Wang, F.; Liu, S.; Yun, Z. In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresour. Technol. 2008, 99, 9009–9012. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, Z. Biodiesel production by direct methanolysis of oleaginous microbial biomass. J. Chem. Technol. Biotechnol. 2007, 82, 775–780. [Google Scholar] [CrossRef]
- Revellame, E.; Hernandez, R.; French, W.; Holmes, W.; Alley, E. Biodiesel from activated sludge through in situ transesterification. J. Chem. Technol. Biotechnol. 2010, 85, 614–620. [Google Scholar] [CrossRef]
- Stavarache, C.; Vinatoru, M.; Nishimura, R.; Maeda, Y. Fatty acids methyl esters from vegetable oils by means of ultrasonic energy. Ultrason. Sonochem. 2005, 12, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.J.; D’Arcy-Evans, C. Transesterification in situ of sunflower seed oil. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 314–318. [Google Scholar] [CrossRef]
- European Standard UNE-EN ISO 734-1. Oilseeds meals. Determination of oil content. Part 1: Extraction method with hexane [or light petroleum]. CEN—European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- Animal and Vegetable Fats and Oils. Preparation of Methyl Esters of Fatty Acids; European Standard UNE-EN ISO 5509; CEN—European Committee for Standardization: Brussels, Belgium, 2000.
- Fat and Oil Derivatives. Fatty Acid Methyl Esters [FAME]. Determination of Ester and Linolenic Acid Methyl Ester Contents; European Standard UNE-EN ISO 14103; CEN—European Committee for Standardization: Brussels, Belgium, 2003.
- Animal and Vegetable Fats and Oils. Analysis by Gas Chromatography of Methyl Esters of Fatty Acids; European Standard UNE-EN ISO 5508; CEN—European Committee for Standardization: Brussels, Belgium, 1990.
- Karaosmanoglu, F.; Cigizoglu, K.B.; Tuter, M.; Ertekin, S. Investigation of the refining step of biodiesel production. Energy Fuels 1996, 10, 890–895. [Google Scholar] [CrossRef]
- Lang, X.; Dalai, A.K.; Bakhshi, N.N.; Reaney, M.J.; Hertz, P.B. Preparation and characterisation of biodiesels from various bio oils. Bioresour. Technol. 2001, 80, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Vicente, G.; Martínez, M.; Aracil, J. A Comparative Study of vegetable oils for biodiesel production in Spain. Energy Fuels 2006, 20, 394–398. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Rodríguez-Reinares, A. Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Process. Technol. 2007, 88, 513–522. [Google Scholar] [CrossRef]
- Felizardo, P.; Correia, M.J.C.; Raposo, I.; Mendes, J.F.; Berkemeier, R.; Bordado, J.M. Production of biodiesel from waste frying oils. Waste Manag. 2006, 26, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Aresta, M.; Dibenedetto, A.; Carone, M.; Colonna, T.; Fragale, C. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ. Chem. Lett. 2005, 3, 136–139. [Google Scholar] [CrossRef]
- Lapuerta, M.; Herreros, J.M.; Lyons, L.; García-Contreras, R.; Briceño, Y. Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel 2008, 87, 3161–3169. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Guo, Y. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol. 2006, 87, 883–890. [Google Scholar] [CrossRef]
- Automotive Fuels. Fatty Acid Methyl Esters [FAME] for Diesel Engines. Requirements and Test Methods; European Standard UNE-EN 14214; CEN—European Committee for Standardization: Brussels, Belgium, 2000.
- Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G. Biodiesel Production Technology; National Renewable Energy Laboratory: Golden, CO, USA, 2004. [Google Scholar]
- Barnwa, B.K.; Sharma, M.P. Prospects of Biodiesel production from vegetable oils in India. Renew. Sustain. Energy Rev. 2005, 9, 363–378. [Google Scholar] [CrossRef]
- Haas, M.J.; Scott, K.M.; Marmer, W.N.; Foglia, T.A. In situ alkaline transesterification: An effective method for the production of fatty acid esters from vegetable oils. J. Am. Oil Chem. Soc. 2004, 81, 83–89. [Google Scholar] [CrossRef]
- Cancela, A.; Maceiras, R.; Salgueiro, J.L.; Sanchez, A.; Urrejola, S. Simulación de una Planta Versátil Para la Obtención de Biodiesel. In Proceeding of the 10° Congreso Interamericano de Computación Aplicada a La Industria de Procesos (CAIP’2011), Catalunya, Girona, 30 May–3 June 2011; pp. 145–152.
- García, J.M.; García Laborda, J.A. Inform of Technological Surveillance; liquid biocarburantes: Biodiesel and bioetanol. Gen. Dir. Univ. Investig. 2006, 4, 32–65. [Google Scholar]
- Predojević, Z.J. The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel 2008, 87, 3522–3528. [Google Scholar] [CrossRef]
- Sonntag, N.O.V. Composition and Characteristics of Individual Fats and Oils. Bailey’s Industrial Oil and Fat Products, 4th ed.; John Wiley & Sons: New York, NY, USA, 1979; Volume 1, p. 343. [Google Scholar]
- Benjumea, P.N.; Agudelos, J.R.; Cano, G.J. Estudio experimental de las variables que afectan la reacción de transesterificación del aceite crudo de palma para la producción de biodiesel. Sci. Tech. 2004, 24, 169–174. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sánchez, A.; Maceiras, R.; Cancela, A.; Rodríguez, M. Influence of n-Hexane on in Situ Transesterification of Marine Macroalgae. Energies 2012, 5, 243-257. https://doi.org/10.3390/en5020243
Sánchez A, Maceiras R, Cancela A, Rodríguez M. Influence of n-Hexane on in Situ Transesterification of Marine Macroalgae. Energies. 2012; 5(2):243-257. https://doi.org/10.3390/en5020243
Chicago/Turabian StyleSánchez, Angel, Rocio Maceiras, Angeles Cancela, and Mónica Rodríguez. 2012. "Influence of n-Hexane on in Situ Transesterification of Marine Macroalgae" Energies 5, no. 2: 243-257. https://doi.org/10.3390/en5020243
APA StyleSánchez, A., Maceiras, R., Cancela, A., & Rodríguez, M. (2012). Influence of n-Hexane on in Situ Transesterification of Marine Macroalgae. Energies, 5(2), 243-257. https://doi.org/10.3390/en5020243