Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results
Abstract
:1. Introduction
2. Methods and Materials
2.1. Experimental Case
2.2. Highly Productive Case
2.3. Biomass and Lipid Productivity Formulae
2.4. Photosynthetic Efficiency
2.5. Energy Return on Investment Formulae
2.6. Partial Financial Return on Investment Analysis Formulae
2.7. Water Intensity Analysis Formulae
“Water consumption describes water that is taken from surface water or a groundwater source and not directly returned. For example, a closed-loop cooling system for thermoelectric steam power generation where the withdrawn water is run through a cooling tower and evaporated instead of being returned to the source is consumption. Water withdrawal pertains to water that is taken from a surface water or groundwater source, used in a process, and (may be) given back from whence it came to be available again for the same or other purposes. To determine the water consumption or withdrawal for each input, the amount of each energy or material input is multiplied by the water equivalent for that input.”.[33]
2.8. Raw Data and Resource Consumption Factors
Growth Total (kJ/Lp) | EC Cons. | HPC Cons. | EE | QF | Price | WCE | WWE |
2,475.45 | 64.43 | ||||||
Direct Water (L/Lp) | 1.91 | 0.05 | 1.33 kJ/L | 568 | $1.1/kL | 1 L/L | 1 L/L |
CO2 (g/L) | 9.35 | 8.00 | 7.33 MJ/kg CO2 | 2.14 | $0.022/kg | 6.50 L/kg | 6.50 L/kg |
Nitrogen in Fertilizer (mg/Lp) | 195.52 | 70.00 | 59 MJ/kg N | 8.84 | $0.73/kg N | 7.88 L/kg | 7.88 L/kg |
F/2 Media (several components not shown) | |||||||
Phosphorus in Fertilizer (mg/Lp) | 3.00 | 8.00 | 44 MJ/kg P | 25.75 | $1.6/kg P | 10 L/kg | 10 L/kg |
Ferric chloride hexahydrate (mg/Lp) | 9.51 | 0 | 20 MJ/kg | 11.00 | $0.31/kg | 10 L/kg | 10 L/kg |
EDTA dihydrate (mg/Lp) | 13.09 | 0 | 20 MJ/kg | 11.00 | $0.31/kg | 10 L/kg | 10 L/kg |
B3N Media (several components not shown) | |||||||
Sodium Nitrate (mg/Lp) | 20.59 | 0 | 9.38 MJ/kg | 9.14 | $0.12/kg | 2.8 L/kg | 2.8 L/kg |
Instant Ocean Salts (g/Lp) | 19.44 | 0 | 1.15 MJ/kg | 1,110 | $1.78/kg | 0 L/kg | 0 L/kg |
Antibiotics (mg/Lp) | 1.89 | 0.09 | 50 MJ/kg | 14,300 | $1/g | 50 L/kg | 50 L/kg |
Lighting (kJ/Lp) | 860.60 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Compressor (kJ/Lp) | 392.89 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Transfers (kJ/Lp) | 0.82 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Mixing (kJ/Lp) | 1,054.81 | 1.24 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Greenhouse Fans (kJ/Lp) | 60.38 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Harvesting Total (kJ/Lp) | 22.81 | 8.04 | |||||
Pump from pond (kJ/Lp) | 1.80 | 0.96 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Forklift propane (uL/Lp) | 3.59 | 0 | 27 MJ/L | 15.9 | $0.60/L | 0.29 L/L | 0.000291 |
Centrifuge (kJ/Lp) | 13.95 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Centrifuge Pump (kJ/Lp) | 6.96 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Flocculants (mg/Lp) | 0.00 | 354.00 | 20 MJ/kg | 3.93 | $0.11/kg | 20 L/kg | 20 L/kg |
Lysing Total (kJ/Lp) | EC Cons. | HPC Cons. | EE | QF | Price | WCE | WWE |
3.80 | 0.20 | ||||||
Pump (kJ/Lp) | 0.03 | 0.00 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Power Supply (kJ/Lp) | 3.51 | 0.21 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Fans (kJ/Lp) | 0.26 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Extraction Total (kJ/Lp) | 70.20 | 0.24 | |||||
Membrane | |||||||
2 Pumps (kJ/Lp) | 1.22 | 0.00 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Distillation | |||||||
Feed Pump (kJ/Lp) | 1.53 | 0.00 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Vacuum Pump (kJ/Lp) | 16.16 | 0.00 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Stage 1 Heater (kJ/Lp) | 5.65 | 0.18 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Stage 2 Heater (kJ/Lp) | 0.89 | 0 | 1 MJ/MJ | 19.5 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Chill Water (L/Lp) | 0.35 | 0.00 | 11.23 kJ/L | 568 | $8.9/kL | 1 L/L | 1 L/L |
Heptane Loss (mL/Lp) | 0.98 | 0.00 | 41.75 MJ/L | 51.3 | $3/L | 30 L/L | 30 L/L |
Refining (kJ/Lp) | 0.24 | 2.13 | |||||
Bio-oil Refining (kJ/Lp) | 0.00 | 0.46 | 1 MJ/MJ | 2.66 | ¢2.8/MJ | 0.49 L/MJ | 21.2 L/MJ |
Refining Materials (Methanol) (mg/Lp) | 0.21 | 20.78 | 40.7 MJ/kg | 6.40 | $0.36/kg | 30 L/L | 30 L/L |
Biomass Fuel Refining (kJ/Lp) | 0.23 | 0.83 | 1 MJ/MJ | 2.66 | ¢0.4/MJ | 0 L/MJ | 0 L/MJ |
Total Energy Input (kJ/Lp) | 2,575.66 | 75.05 | |||||
Bio-oil (mg/Lp) | 2.11 | 210 | 40 MJ/kg | 14.5 | ¢2.1/MJ | ||
Methane (mg/Lp)) | 41.58 | 150 | 55 MJ/kg | 2.66 | ¢0.4/MJ | ||
Total Energy Output (kJ/Lp) | 2.37 | 16.61 | |||||
2nd O EROI | 9.2 × 10−4 | 0.22 |
3. Results
3.1. Biomass, Lipid, and Biofuel Productivities
Photosynthetic Efficiency (%) | Grown Mass Productivity () mg/L-d, (g/m2-d) | Bio-oil Productivity () mg/L-d, (g/m2-d) | Biomass Fuel Productivity () mg/L-d, (g/m2-d) | |
---|---|---|---|---|
Experimental Case | NA | 2.17 (0.43) | 0.02 (0.004) | 0.34 (0.07) |
Highly Productive Case | 3.7 | 80.0 (16.0) | 16.6 (3.32) | 12.1 (2.42) |
Theoretical Optimum Case | 11.9 | 921 (184) | NA | NA |
3.2. Photosynthetic Efficiency
3.3. Energy Return on Investment for Algal Biofuel
Experimental Case | Highly Productive Case | |
---|---|---|
Bio-oil Yield (g/kLp) | 2.1 | 210 |
(% of U.S. transp. petroleum displaced by 5 Bgal of Bio-oil/yr) | 2.8% | 2.8% |
Methane Yield (g/kLp) | 42 | 150 |
(% of U.S. natural gas displaced by methane co-product of 5 Bgal of Bio-oil/yr) [39] | 60% | 2.2% |
Energy Expense for Growth (kJ/Lp) | 2500 | 64 |
Energy Expense for Processing (kJ/Lp) | 97 | 8.5 |
Energy Expense for Refining (kJ/Lp) | 0.2 | 2.1 |
Energy Output (Bio-oil and Methane) (kJ/Lp) | 2.4 | 17 |
Second-order EROI | 9.2 × 10−4 | 0.22 |
Quality Adjusted Second-order EROI | 9.2 × 10−5 | 0.36 |
Operating Cost of Growth ($/L BO) | 40,000 | 1.6 |
Operating Cost of Processing ($/L BO) | 2,900 | 0.4 |
Operating Cost of Refining ($/L BO) | 0.4 | 0.1 |
Bio-oil Revenue ($/L BO) | 0.7 | 0.7 |
Methane Revenue ($/L BO) | 2.3 | 0.1 |
Subsidy ($/L BO) | 0.1 | 0.1 |
PFROI (No Capital, No Subsidies) | 9.2 × 10−5 | 0.37 |
PFROI w/ Subsidies (No Capital, With Subsidies) | 9.6 × 10−5 | 0.43 |
Total Distance Traveled (Bio-oil and Methane) (km/kLp) | 0.6 | 5.2 |
Water Consumption (L H2O/L of Bio-oil) | 1.3 × 106 | 450 |
(multiples of Austin water use for 5 Bgal of Bio-oil/yr) [40] | 150,000× | 51× |
Second-order Water Consumption (L H2O/kLp) | 3500 | 120 |
Second-order Water Consumption Intensity, WCI (L H2O/km) | 5700 | 22 |
Water Withdrawal (L H2O/L of Bio-oil) | 20 × 106 | 4400 |
Water Withdrawal (L H2O/kLp) | 53,700 | 1100 |
Second-order Water Withdrawal Intensity, WWI (L H2O/km) | 87,000 | 220 |
Electricity Consumption (MJ/L BO) (1 kWh = 3.6 MJ) | 9.2 × 105 | 9.9 |
(% of U.S. electricity production for 5 Bgal of Bio-oil/yr) [41] | 120,000% | 1.3% |
CO2 Consumption (kg/L BO) | 3700 | 31 |
(% of total U.S. emissions for 5 Bgal of Bio-oil/yr) [42] | 1200% | 11% |
Nitrogen Consumption (kg/L BO) | 77 | 0.3 |
(% of total U.S. N use for 5 Bgal of Bio-oil/yr) [43] | 13,000% | 45% |
3.4. Financial Return on Investment of Algal Biofuel
3.5. Water Intensity of Algal Biofuel
Study, Case | Water/MJ BO [L H2O/MJ BO] | Water/kg BO [L H2O/kg BO] | WCI [L/km] | Reference |
---|---|---|---|---|
First Order Analysis | ||||
Yang et al., 0% Recycling | 93 | 3700 | 250 | [55] |
Yang et al., 100% Recycling | 15 | 600 | 40 | [55] |
Subhadra and Edwards, Lower Bound | 25 | 1010 | 68 | [9] |
Subhadra and Edwards, Upper Bound | 68 | 2700 | 182 | [9] |
Lundquist et al., Case 5 | NA | NA | 85 | [11] |
Experimental Case (evaporation, no recycling, lab-scale artifacts) | NA | NA | 3700 | |
Highly Productive Case (95% recycling, no evaporation) | NA | NA | 10 | |
Second Order Analysis | ||||
Experimental Case (evaporation, no recycling, lab-scale artifacts) | 42,000 | 1,700,000 | 5700 | |
Highly Productive Case (no evaporation, 95% recycling) | 10 | 560 | 22 | |
Other Analyses* | ||||
Clarens et al. | 380 | [15] | ||
Harto et al., Enclosed Average | 1.3 | 44 | 2.9 | [54] |
Harto et al., Open Average | 6.2 | 220 | 14 | [54] |
Lardon et al., Dry processing, low N | 0.3 | 11 | 0.7 | [17] |
Lardon et al., Wet processing, normal N | 1.0 | 34 | 2.3 | [17] |
3.6. Resource Requirements for 5 Bgal/yr of Algal Bio-oil
3.6.1. Carbon Dioxide
3.6.2. Nitrogen Fertilizer
3.6.3. Electricity
3.6.4. Methane Co-Product
4. Conclusions
4.1. Current Feasibility
Parameter | Highly Productive Case Assumption | Data Reported in the Literature |
---|---|---|
Grown Mass Productivity (mg/L-d) | 80 | Ponds: 50–170 [2], 83 [10], 70 [11], 2 [14], 410 [27], 19–26 [15], 64–83 [17], 100 [44], 80 [46], 95–300 [57], 35 [58], 200 [59] |
Reactors: 270–560 [59], 550 [60], 1700 [61] | ||
Lipid Fraction (-) | 0.3 1 | 0.22 [3], 0.25 [11], 0.02 [14], 0.5 [27], 0.18–0.39 [17], 0.2–0.35 [46], 0.3 [58], 0.5 [59], 0.23 [60], 0.44 [61], 0.25 [62], 0.15 [63], 0.21–0.25 [57], 0.16–0.75 [64] |
Mixing Energy (J/L-d) | 100 | 60 [10], 58 [11], 8600 [14], 674 [27], 6.4 [15], 100 [17], 72 [44], 28–240 [46], 22 [57], 346 (4800–220,000 bioreactors) [58], 130 [59], 50 [64], 31–53 [57] |
Nutrient Supply (J/L-d) | 0 | In Mixing [27], 2.6 [57], 2.0 [57] |
Carbon Dioxide Requirement (g/g algae) | 1.8 | 1.7–2 [2,15,17,44,45,46] |
Carbon Dioxide Uptake (%) | 25 | 25 (in airlift reactors) [14] |
Nitrogen Requirement (mg/g algae) | 70 | 61 [10], 147 [27], 87 [15], 110 (47 for N-starved) [17] 4 [44], 130 [46] |
Nitrogen Uptake (%) | 100 | 61 [26], 100 [65] |
Phosphorus Requirement (mg/g algae) | 8 | 20 [27], 12 [15], 2.4 (9.9 for N-starved) [17], 0.6 [44], 8 [46] |
Phosphorus Uptake (%) | 100 | 91 [26], 100 [65] |
Antibiotic Consumption (mg/Lp) | 0.1 | 1.89 [14] |
Harvesting Efficiency (-) | 0.90 4 | 0.92 [14], 0.9 [17], 0.85 [46], 0.95 [55], 0.95 [59], 0.95 (pH sweep) [66] |
Harvesting Pumping Energy (J/L-d) | 77 4 | 46 [10], 37 [46] |
Harvesting Concentration Energy (J/L-d) | ~0 4 | 13 [10], 190 [14], 500 [27], 11 [15], 92 [17], 237 [46], 0 [59], 63 [57], 37 [57] |
Harvesting Flocculants (mg/g algae) | 350 4 | cf. [66,67] |
Harvesting Drying Energy (J/L-d) | 0 4 | 0 [14], 1,135 [17], 4200 [46], 0 [59] |
Cell Lysing Efficiency (-) | 0.95 4 | 0.92 [14] |
Cell Lysing Energy (J/Lp) | 0.21 4 | 3.8 [14] |
Biocrude Separations Efficiency 3 (-) | 0.27 4 | 0.01 [14] |
Biocrude Separations Electricity (J/L-d) | ~0 4 | 5.3 [11], 154 [14], 206 [27], 17–83 [17] |
Biocrude Separations Heat (J/L-d) | 17 4 | 210 [11], 53 [14], 641 [27], 76–221 [17] |
Biomass Slurry Separations Efficiency (-) | 1.00 4 | NA, Recovered during biocrude separations |
Biomass Slurry Separations Energy (J/L-d) | 0 4 | NA, Recovered during biocrude separations |
Bio-oil Refining Efficiency (-) | 0.90 | ~0.6 [63], 0.23–0.98 [68] (also cf. [62,69,70]) |
Bio-oil Refining Energy (MJ/kg bio-oil) | 2.2 | 2.2 [27], 0.9 [17] |
Bio-oil Refining Methanol (g/kg bio-oil) | 0.1 | 0.1 [27], 114 [17], (also cf. [57,68]) |
Biomass Fuel (Methane) Refining Efficiency (-) | 0.25 | Catalytic hydrothermal gasification [35] |
Biomass Fuel (Methane) Refining Energy (J/Lp) | 830 | Catalytic hydrothermal gasification [35] |
Bio-oil Produced (mg/L-d) (40 MJ/kg) | 17 (670 J/L-d) | 660 J/(L-d) [11] 5, 160 [27], 6 [46] |
Methane Produced (J/L-d) | 660 | 630 [11] 5, 350 [44] |
Total Energy Output (J/Lp) | 16,600 5 | 2400 J/Lp [14], 1290 J/L-d [11] 5 |
4.2. Targets to Achieve Sustainable Production
- Algal concentration of 3 g/L with a lipid fraction of 0.3, which would yield approximately 25 kJ of bio-oil and 25 kJ of methane per liter of processed volume (which is about 800 L BO/MLp and 450 kg methane/MLp, estimated to be roughly $600 of revenue per million liters of growth volume (assuming $0.66/L BO ($2.50/gal BO) and $3.8/GJ ($4/MMBtu) of methane));
- In conjunction with item 1, an energy input for growth, processing, and refining that is less than 50 kJ per liter of processed volume enables a 2nd O EROI > 1 and requires using discounted inputs;
- The FROI is dependent upon market prices, and therefore can vary substantially depending on market conditions (e.g., oil price). However, based on the price assumptions used in this study, if the targets listed above can be achieved, the PFROI would be greater than 1 if the cost of growth, processing, and refining is less than $600 per million liters of growth volume processed (which is equivalent to $0.20/kg of grown mass). Achieving a total cost less than $600 per million liters of growth volume processed would yield an overall FROI greater than 1 for this scenario (assuming no subsidy revenue);
- A fresh water consumption intensity on the order of 2.4 L/km (1 gal/mi), achieved by consuming roughly 25 liters of fresh water per thousand liters of processed volume (which corresponds to no evaporation during growth, minimal processing water use, and greater than 97.5% recycling for fresh water cultivation). This consumption corresponds to about 33 liters of fresh water per liter of bio-oil produced (with a methane co-product of about 0.58 kg/L BO). Using saline water or waste water could also enable a low fresh water consumption intensity;
- A net nutrient consumption that would enable large-scale production while only marginally increasing the national fertilizer consumption. For example, to produce 5 Bgal of fuel per year (19 GL/yr), the net nitrogen consumption for each liter of fuel produced should be less than about 26 g to prevent a national increase in nitrogen fertilizer consumption of more than 5% (which is about 6 × 108 kg N/yr [43]). In this scenario, one liter of bio-oil is produced from about 4 kg of algae, and therefore the nitrogen consumption should be less than about 7 g per kg of algae, which is roughly 10% of the minimum possible nitrogen requirement for algae (~70 g of nitrogen per kg of algae). Therefore, nitrogen recycling or utilization of waste nitrogen of 90% or more is required.
Algal Concentration (g/Lp) | Lipid Fraction (%dw) | Energy Consumption (kJ/Lp) | Production Cost ($/MLp) | Fresh Water Consumption (L/km traveled) | Nitrogen Consumption (g/kg algae) | |
---|---|---|---|---|---|---|
EC | 0.3 | 2 | 2600 | 112,000 | 5700 | 770 |
HPC | 1 | 30 | 75 | 550 | 22 | 70 |
Targets | 3 | 30 | 50 | 600 | 2.4 | 7 |
4.3. Innovation Pathways
- (1)
- (2)
- (3)
- (4)
- (5)
- establishing energy-efficient water treatment and recycling methods [55];
- (6)
- (7)
- avoiding separation via distillation.
Abbreviations:
Products:
BO | Bio-oil |
BMF | Biomass Fuel |
BF | Biofuel |
BS | Biomass in slurry |
BC | Biocrude |
GM | Grown Mass |
HM | Harvested Mass |
LM | Lysed Mass |
GV | Growth Volume |
S | Subsidy |
Processes:
G | Growth |
P | Processing |
R | Refining |
H | Harvesting |
CL | Cell Lysing |
D | Distribution |
Efficiency:
proc | Processing |
ref | Refining |
harv | Harvesting |
cellys | Cell Lysing |
sep | Separations |
Composition:
LF | Lipid Fraction |
NLF | Neutral Lipid Fraction |
Nomenclature :
EROI | Energy Return On Investment |
FROI | Financial Return On Investment |
PFROI | Partial Financial Return On Investment |
P | Productivity |
M | Mass |
V | Volume |
φ | Efficiency |
E | Energy |
ED | Direct energy flows |
EI | Indirect energy flows (in units of joules) |
I | Irradiance (in units of joules per square meters per day) |
tc | Cultivation time |
d | Pond depth (in units of meters) |
PE | Photosynthetic Efficiency |
PAR | Photosynthetically Active Radiation |
PTE | Photon Transmission Efficiency |
PUE | Photon Utilization Efficiency |
A | Photon-to-glucose conversion efficiency |
HHV | Higher heating value |
CoL | Cost of Living |
τ | Glucose-to-biomass conversion efficiency |
QF | Quality Factor |
MP | Material Price (in units of dollars per kilogram) |
EP | Energy Price (in units of dollars per joule) |
EE | Energy Equivalent (in units of joules per kilogram) |
R | Revenue |
CC | Capital Cost |
OC | Operating Cost |
L | Labor |
WCI | Water Consumption Intensity (in units of liters per km traveled) |
WWI | Water Withdrawal Intensity (in units of liters per km traveled) |
WC | Water Consumption (in units of liters) |
WW | Water Withdrawal (in units of liters) |
FE | Fuel Economy |
Accents:
Tilde denotes an input for a processing step | |
Apostrophe indicates units of joules per liter of processed volume | |
Inverted apostrophe indicates units of joules per liter of processed volume per day |
Acknowledgments
Appendix
Inputs and Outputs | Cost Equivalent ($/X) | Batch 1 | Batch 2 | Batch 3 | Batch 4 | Batch 5 | Ave Total Cost ($/kLp) | Percent of Total |
---|---|---|---|---|---|---|---|---|
Volume (L) | 947 | 974 | 1889 | 1893 | 1941 | |||
Growth Total ($/kLp) | 97.68 | 101.16 | 97.07 | 184.89 | 45.06 | 105.17 | 93.18 | |
Direct Water ($/kLp) | 1.1 $/kL | 2.22 | 2.24 | 1.78 | 2.56 | 1.29 | 2.02 | 1.79 |
CO2 ($/kLp) | 0.022 $/kg | 0.23 | 0.23 | 0.16 | 0.32 | 0.09 | 0.21 | 0.18 |
Urea ($/kL) | 0.30 $/kg | 0.08 | 0.08 | 0.17 | 0.33 | 0.05 | 0.14 | 0.12 |
F/2 Media ($/kLp) | - | |||||||
Sodium phosphate | 0.30 $/kg | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
B3N Media ($/kLp) | - | |||||||
Sodium nitrate | 0.12 $/kg | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Instant Ocean Salt ($/kLp) | 1.78 $/kg | 28.69 | 28.99 | 39.64 | 51.73 | 23.75 | 34.56 | 30.62 |
Antibiotics ($/kLp) | 1.0 $/g | 2.03 | 2.05 | 0.72 | 4.64 | 0.00 | 1.89 | 1.67 |
Lighting ($/kLp) | 0.028 $/MJ | 27.64 | 27.93 | 16.56 | 44.60 | 3.76 | 24.10 | 21.35 |
Compressor ($/kLp) | 0.028 $/MJ | 11.54 | 11.88 | 8.98 | 18.42 | 4.18 | 11.00 | 9.75 |
Transfers ($/kLp) | 0.028 $/MJ | 0.02 | 0.02 | 0.02 | 0.05 | 0.00 | 0.02 | 0.02 |
Mixing ($/kLp) | 0.028 $/MJ | 23.54 | 26.00 | 27.80 | 60.25 | 10.09 | 29.53 | 26.17 |
Greenhouse Fans ($/kLp) | 0.028 $/MJ | 1.70 | 1.72 | 1.23 | 1.98 | 1.82 | 1.69 | 1.50 |
Harvesting Total | 0.54 | 0.52 | 0.78 | 0.70 | 0.64 | 0.64 | 0.57 | |
Pump from pond ($/kLp) | 0.028 $/MJ | 0.04 | 0.04 | 0.05 | 0.07 | 0.06 | 0.05 | 0.04 |
Forklift propane ($/kLp) | 0.6 $/L | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Centrifuge ($/kLp) | 0.028 $/MJ | 0.39 | 0.38 | 0.45 | 0.38 | 0.35 | 0.39 | 0.35 |
Centrifuge Pump ($/kLp) | 0.028 $/MJ | 0.11 | 0.11 | 0.28 | 0.24 | 0.24 | 0.20 | 0.17 |
Lysing Total | 0.09 | 0.10 | 0.15 | 0.10 | 0.10 | 0.11 | 0.09 | |
Pump ($/kLp) | 0.028 $/MJ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Power Supply ($/kLp) | 0.028 $/MJ | 0.09 | 0.10 | 0.13 | 0.09 | 0.09 | 0.10 | 0.09 |
Fans ($/kLp) | 0.028 $/MJ | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
Extraction Total | 11.10 | 1.33 | 11.61 | 8.08 | 2.66 | 6.96 | 6.16 | |
Membrane | ||||||||
2 Pumps ($/kLp) | 0.028 $/MJ | 0.01 | 0.04 | 0.04 | 0.01 | 0.07 | 0.03 | 0.03 |
Distillation | ||||||||
Feed Pump ($/kLp) | 0.028 $/MJ | 0.04 | 0.05 | 0.08 | 0.03 | 0.02 | 0.04 | 0.04 |
Vacuum Pump ($/kLp) | 0.028 $/MJ | 0.61 | 0.49 | 0.65 | 0.29 | 0.22 | 0.45 | 0.40 |
Stage 1 Heater ($/kLp) | 0.028 $/MJ | 0.15 | 0.18 | 0.28 | 0.11 | 0.07 | 0.16 | 0.14 |
Stage 2 Heater ($/kLp) | 0.028 $/MJ | 0.05 | 0.01 | 0.04 | 0.01 | 0.01 | 0.02 | 0.02 |
Chilled Water ($/kLp) | 8.9 $/kL | 3.45 | 3.58 | 3.68 | 4.38 | 1.46 | 3.31 | 2.93 |
Heptane Loss ($/kLp) | 3 $/L | 6.79 | -3.02 | 6.84 | 3.25 | 0.80 | 2.93 | 2.60 |
Refining Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bio-oil refining ($/kLp) | 0.028 $/MJ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Refining Materials ($/kLp) | 0.36 $/kg | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Biomass Fuel Refining ($/kLp) | 0.4 ¢/MJ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total Input ($/kLp) | 109.41 | 103.12 | 109.60 | 193.78 | 58.46 | 112.87 | 100.00 | |
Biocrude (g) | 1.5 g | 2.9 g | 4.9 g | 4.4 g | 2.1 g | |||
Biomass in Slurry (g) | 154 g | 138 g | 301 g | 310 g | 383 g | |||
Bio-oil ($/kLp) | 0.83 $/kg | 0.0013 | 0.0024 | 0.0022 | 0.0019 | 0.0009 | 0.0017 | 16.75 |
Methane ($/kLp) | 0.21 $/kg | 0.0085 | 0.0074 | 0.0084 | 0.0086 | 0.0104 | 0.0087 | 83.25 |
Total Output ($/kLp) | 0.010 | 0.010 | 0.010 | 0.010 | 0.011 | 0.010 | 100.00 | |
Partial FROI (×103) (no subsidies or capital costs) | 0.09 | 0.10 | 0.10 | 0.05 | 0.23 | 0.092 |
Inputs and Outputs | Cost Equivalent ($/X) | HP Case ($/MLp) | Percentage of HP Total | HP Case ($/gal bio-oil) |
---|---|---|---|---|
Growth Total | 422.33 | 76.83 | 6.18 | |
Direct Water | 1.1 $/kL | 52.84 | 9.61 | 0.78 |
CO2 | 0.022 $/kg | 176.00 | 32.02 | 2.59 |
Urea | 0.30 $/kg | 51.44 | 9.36 | 0.74 |
F/2 Media | - | |||
Sodium phosphate monobasic hydrate | 0.30 $/kg | 13.00 | 2.36 | 0.18 |
B3N Media | - | |||
Sodium Nitrate | 0.12 $/kg | 0.00 | 0.00 | 0.00 |
Instant Ocean Salt | 1.78 $/kg | 0.00 | 0.00 | 0.00 |
Antibiotics | 1.0 $/g | 94.40 | 17.17 | 1.39 |
Lighting | 0.028 $/MJ | 0.00 | 0.00 | 0.00 |
Compressor | 0.028 $/MJ | 0.00 | 0.00 | 0.00 |
Transfers | 0.028 $/MJ | 0.00 | 0.00 | 0.00 |
Mixing | 0.028 $/MJ | 34.65 | 6.30 | 0.51 |
Greenhouse Fans | 0.028 $/MJ | 0.00 | 0.00 | 0.00 |
Harvesting Total | 65.68 | 11.95 | 0.97 | |
Pump from pond | 0.028 $/MJ | 26.74 | 4.86 | 0.39 |
Flocculants | 0.11 $/kg | 38.94 | 7.08 | 0.57 |
Lysing Total | 5.88 | 1.07 | 0.09 | |
Pump | 0.028 $/MJ | 0.10 | 0.02 | 0.00 |
Power Supply | 0.028 $/MJ | 5.78 | 1.05 | 0.08 |
Extraction Total | 43.40 | 7.90 | 0.64 | |
Membrane | ||||
2 Pumps | 0.028 $/MJ | 0.00 | 0.00 | 0.00 |
Distillation | ||||
Feed Pump | 0.028 $/MJ | 0.00 | 0.00 | 0.00 |
Vacuum Pump | 0.028 $/MJ | 0.09 | 0.02 | 0.00 |
Stage 1 Heater | 0.028 $/MJ | 5.17 | 0.94 | 0.08 |
Chilled Water | 8.9 $/kL | 37.78 | 6.87 | 0.56 |
Heptane Loss | 3 $/L | 0.36 | 0.06 | 0.01 |
Refining Total | 12.38 | 2.25 | 0.18 | |
Bio-oil refining | 0.028 $/MJ | 1.66 | 0.30 | 0.02 |
Refining Materials | 0.36 $/kg | 7.58 | 1.38 | 0.11 |
Biomass Fuel Refining | 0.4 ¢/MJ | 3.15 | 0.57 | 0.05 |
Total Input | 547.90 | 100.00 | 8.06 | |
Biocrude | 208 g/kL | |||
Biomass in Slurry | 599 g/kL | |||
Bio-oil | 0.83 $/kg | 171.54 | 84.51 | 2.52 |
Methane | 0.21 $/kg | 31.45 | 15.49 | 0.46 |
Total Output | 202.99 | 100.00 | 2.99 | |
Partial FROI (no subsidies or capital) | 0.37 |
Inputs | Water Equiv. (L/X) | #1 (L/kLp) | #2 (L/kLp) | #3 (L/kLp) | #4 (L/kLp) | #5 (L/kLp) | Ave Water (L/kLp) |
---|---|---|---|---|---|---|---|
Vol. Processed (Lp) | 947 L | 974 L | 1889 L | 1893 L | 1941 L | ||
Growth Total (L/kLp) | 3294.21 | 3372.86 | 2689.80 | 4716.68 | 1600.72 | 3134.85 | |
Direct Water | 1 L/L | 2097.48 | 2119.67 | 1683.79 | 2420.20 | 1224.43 | 1909.11 |
CO2 | 6.50 L/kg 1 | 66.95 | 68.81 | 46.21 | 95.00 | 27.03 | 60.80 |
Urea | 7.88 L/kg 1 | 1.84 | 1.86 | 4.05 | 7.76 | 1.24 | 3.35 |
F/2 Media | |||||||
Sodium phosphate monobasic dihydrate | 10 L/kg 2 | 0.07 | 0.07 | 0.16 | 0.35 | 0.11 | 0.15 |
Ferric chloride hexahydrate | 10 L/kg 2 | 0.04 | 0.04 | 0.10 | 0.22 | 0.07 | 0.10 |
EDTA dihydrate | 10 L/kg 2 | 0.06 | 0.06 | 0.14 | 0.30 | 0.10 | 0.13 |
B3N Media | |||||||
Sodium Nitrate | 2.8 L/kg | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.06 |
Instant Ocean Salt (NaCl) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Lighting | 0.49 L/MJ | 483.70 | 488.82 | 289.73 | 780.42 | 65.81 | 421.69 |
Compressor | 0.49 L/MJ | 201.90 | 207.97 | 157.10 | 322.41 | 73.20 | 192.52 |
Transfers | 0.49 L/MJ | 0.36 | 0.37 | 0.38 | 0.86 | 0.03 | 0.40 |
Mixing | 0.49 L/MJ | 411.92 | 454.98 | 486.52 | 1054.31 | 176.53 | 516.86 |
Greenhouse Fans | 0.49 L/MJ | 29.77 | 30.09 | 21.59 | 34.60 | 31.87 | 29.58 |
Harvesting Total (L/kLp) | 9.44 | 9.11 | 13.67 | 12.23 | 11.21 | 11.13 | |
Pump from pond | 0.49 L/MJ | 0.61 | 0.63 | 0.86 | 1.27 | 1.04 | 0.88 |
Forklift propane | 0.3 L/L | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Centrifuge | 0.49 L/MJ | 6.88 | 6.64 | 7.89 | 6.72 | 6.05 | 6.84 |
Centrifuge Pump | 0.49 L/MJ | 1.94 | 1.84 | 4.91 | 4.24 | 4.13 | 3.41 |
Lysing Total (L/kLp) | 1.51 | 1.79 | 2.58 | 1.74 | 1.69 | 1.86 | |
Pump | 0.49 L/MJ | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |
Power Supply | 0.49 L/MJ | 1.50 | 1.78 | 2.28 | 1.54 | 1.50 | 1.72 |
Fans | 0.49 L/MJ | 0.00 | 0.00 | 0.28 | 0.19 | 0.18 | 0.13 |
Extraction Total | 469.22 | 384.83 | 396.74 | 531.35 | 178.92 | 392.21 | |
Membrane | |||||||
2 Pumps | 0.49 L/MJ | 0.13 | 0.62 | 0.75 | 0.24 | 1.25 | 0.60 |
Distillation | |||||||
Feed Pump | 0.49 L/MJ | 0.65 | 0.92 | 1.42 | 0.45 | 0.32 | 0.75 |
Vacuum Pump | 0.49 L/MJ | 10.71 | 8.58 | 11.30 | 5.07 | 3.93 | 7.92 |
Stage 1 Heater | 0.49 L/MJ | 2.66 | 3.08 | 4.89 | 1.98 | 1.24 | 2.77 |
Stage 2 Heater | 0.49 L/MJ | 0.89 | 0.22 | 0.63 | 0.24 | 0.19 | 0.43 |
Chilled Water | 1 L/L | 386.28 | 401.60 | 309.35 | 490.88 | 163.97 | 350.42 |
Heptane Loss | 30 L/L 2 | 67.89 | -30.18 | 68.40 | 32.49 | 8.04 | 29.32 |
Refining Total (L/kLp) | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | |
Bio-oil refining | 0.49 L/MJ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Refining Materials | 30 L/L 2 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 |
Biomass Fuel Refining | 0 L/MJ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total Input (L/kLp) | 3774.38 | 3768.61 | 3102.79 | 5262.01 | 1792.55 | 3540.08 | |
Outputs | #1 (mg/Lp) | #2 (mg/Lp) | #3 (mg/Lp) | #4 (mg/Lp) | #5 (mg/Lp) | ||
Biocrude (mg/Lp) | 1.61 | 2.96 | 2.60 | 2.34 | 1.06 | ||
Biomass in Slurry (mg/Lp) | 162.62 | 141.68 | 159.48 | 163.75 | 197.44 | ||
Bio-oil (mg/Lp) | 1.61 | 2.96 | 2.60 | 2.34 | 1.06 | ||
Methane (mg/Lp) | 40.98 | 35.70 | 40.19 | 41.27 | 49.76 | ||
#1 (kJ/Lp) | #2 (kJ/Lp) | #3 (kJ/Lp) | #4 (kJ/Lp) | #5 (kJ/Lp) | |||
Total Output (kJ/Lp) | 2.32 | 2.08 | 2.31 | 2.36 | 2.78 |
Inputs and Outputs | Water Equiv. (L/X) | #1 (L/kLp) | #2 (L/kLp) | #3 (L/kLp) | #4 (L/kLp) | #5 (L/kLp) | Ave Water (L/kLp) |
---|---|---|---|---|---|---|---|
Vol. Processed (Lp) | 947.00 | 974.00 | 1,889.00 | 1,893.00 | 1,941.00 | ||
Growth Total | 50,955.0 | 53,340.1 | 43,066.4 | 97,387.7 | 16,285.4 | 52,206.9 | |
Direct Water | 1 L/L | 2,097.48 | 2,119.67 | 1,683.79 | 2,420.20 | 1,224.43 | 1,909.11 |
CO2 | 6.50 L/kg 1 | 66.95 | 68.81 | 46.21 | 95.00 | 27.03 | 60.80 |
Urea | 7.88 L/kg 1 | 1.84 | 1.86 | 4.05 | 7.76 | 1.24 | 3.35 |
F/2 Media | |||||||
Sodium phosphate monobasic dehydrate | 10 L/kg 2 | 0.07 | 0.07 | 0.16 | 0.35 | 0.11 | 0.15 |
Ferric chloride hexahydrate | 10 L/kg 2 | 0.04 | 0.04 | 0.10 | 0.22 | 0.07 | 0.10 |
EDTA dehydrate | 10 L/kg 2 | 0.06 | 0.06 | 0.14 | 0.30 | 0.10 | 0.13 |
B3N Media | |||||||
Sodium Nitrate | 2.8 L/kg | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.06 |
Instant Ocean Salt | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Lighting | 21.2 L/MJ | 20,927.4 | 21,148.8 | 12,535.2 | 33,765.0 | 2,847.1 | 18,244.7 |
Compressor | 21.2 L/MJ | 8,735.1 | 8,997.9 | 6,796.9 | 13,949.2 | 3,167.1 | 8,329.6 |
Transfers | 21.2 L/MJ | 15.78 | 15.95 | 16.33 | 37.28 | 1.12 | 17.29 |
Mixing | 21.2 L/MJ | 17,822.1 | 19,685.1 | 21,049.5 | 45,615.1 | 7,637.8 | 22,361.9 |
Greenhouse Fans | 21.2 L/MJ | 1,288.09 | 1,301.72 | 934.07 | 1,497.05 | 1,378.96 | 1,279.98 |
Harvesting Total | 408.49 | 394.18 | 591.24 | 529.13 | 484.99 | 481.61 | |
Pump from pond | 21.2 L/MJ | 26.60 | 27.43 | 37.17 | 54.83 | 44.82 | 38.17 |
Forklift propane | 0.30 L/L | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Centrifuge | 21.2 L/MJ | 297.79 | 287.11 | 341.56 | 290.85 | 261.65 | 295.79 |
Centrifuge Pump | 21.2 L/MJ | 84.11 | 79.64 | 212.52 | 183.44 | 178.51 | 147.64 |
Lysing Total | 65.23 | 77.48 | 111.56 | 75.40 | 73.00 | 80.53 | |
Pump | 21.2 L/MJ | 0.46 | 0.51 | 0.61 | 0.81 | 0.39 | 0.56 |
Power Supply | 21.2 L/MJ | 64.76 | 76.97 | 98.83 | 66.53 | 64.75 | 74.37 |
Fans | 21.2 L/MJ | 0.00 | 0.00 | 12.12 | 8.06 | 7.86 | 5.61 |
Extraction Total | 1,105.17 | 952.09 | 1,199.45 | 868.55 | 471.39 | 919.33 | |
Membrane | |||||||
2 Pumps | 21.2 L/MJ | 5.46 | 26.69 | 32.65 | 10.55 | 54.03 | 25.88 |
Distillation | |||||||
Feed Pump | 21.2 L/MJ | 28.21 | 39.96 | 61.41 | 19.35 | 13.76 | 32.54 |
Vacuum Pump | 21.2 L/MJ | 463.40 | 371.41 | 488.87 | 219.32 | 169.86 | 342.57 |
Stage 1 Heater | 21.2 L/MJ | 115.25 | 133.21 | 211.71 | 85.47 | 53.48 | 119.82 |
Stage 2 Heater | 21.2 L/MJ | 38.68 | 9.40 | 27.07 | 10.48 | 8.26 | 18.78 |
Chilled Water | 1 L/L | 386.28 | 401.60 | 309.35 | 490.88 | 163.97 | 350.42 |
Heptane Loss | 30 L/L2 | 67.89 | -30.18 | 68.40 | 32.49 | 8.04 | 29.32 |
Refining Total | 0.08 | 0.15 | 0.13 | 0.12 | 0.05 | 0.11 | |
Bio-oil refining | 21.2 L/MJ | 0.08 | 0.14 | 0.12 | 0.11 | 0.05 | 0.10 |
Refining Materials | 30 L/L2 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 |
Biomass Fuel Refining | 0 L/MJ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total Input (L/kLp) | 52,534.0 | 54,764.0 | 44,968.8 | 98,860.9 | 17,314.8 | 53,688.6 | |
Mass Outputs | #1 (mg/Lp) | #2 (mg/Lp) | #3 (mg/Lp) | #4 (mg/Lp) | #5 (kJ/Lp) | ||
Biocrude (mg/Lp) | 1.61 | 2.96 | 2.60 | 2.34 | 1.06 | ||
Biomass in Slurry (mg/Lp) | 162.62 | 141.68 | 159.48 | 163.75 | 197.44 | ||
Bio-oil (mg/Lp) | 1.61 | 2.96 | 2.60 | 2.34 | 1.06 | ||
Methane (mg/Lp) | 40.98 | 35.70 | 40.19 | 41.27 | 49.76 | ||
Energy (kJ/Lp) | #1 (kJ/Lp) | #2 (kJ/Lp) | #3 (kJ/Lp) | #4 (kJ/Lp) | #5 (kJ/Lp) | ||
Total Output (kJ/Lp) | 2.32 | 2.08 | 2.31 | 2.36 | 2.78 |
Water Consumption | Water Withdrawal | |||
---|---|---|---|---|
Experimental Case (L/kLp) | Highly Productive Case (L/kLp) | Experimental Case (L/kLp) | Highly Productive Case (L/kLp) | |
Growth Total | 3,134.85 | 103.89 | 52,206.93 | 1,079.51 |
Direct Water | 1,909.11 | 50.00 | 1,909.11 | 1,000.00 |
CO2 | 60.80 | 52.00 | 60.80 | 52.00 |
Urea | 3.35 | 1.20 | 3.35 | 1.20 |
F/2 Media | ||||
Sodium phosphate monobasic dehydrate | 0.15 | 0.08 | 0.15 | 0.08 |
Ferric chloride hexahydrate | 0.10 | 0.00 | 0.10 | 0.00 |
EDTA dehydrate | 0.13 | 0.00 | 0.13 | 0.00 |
B3N Media | ||||
Sodium Nitrate | 0.06 | 0.00 | 0.06 | 0.00 |
Instant Ocean Salt | 0.00 | 0.00 | 0.00 | 0.00 |
Lighting | 421.69 | 0.00 | 18,244.70 | 0.00 |
Compressor | 192.52 | 0.00 | 8,329.26 | 0.00 |
Transfers | 0.40 | 0.00 | 17.29 | 0.00 |
Mixing | 516.86 | 0.61 | 22,361.90 | 26.24 |
Greenhouse Fans | 29.58 | 0.00 | 1,279.98 | 0.00 |
Harvesting Total | 11.13 | 7.55 | 481.61 | 27.33 |
Pump from pond | 0.88 | 0.47 | 38.17 | 20.25 |
Forklift propane | 0.00 | 0.00 | 0.00 | 0.00 |
Centrifuge | 6.84 | 0.00 | 295.79 | 0.00 |
Centrifuge Pump | 3.41 | 0.00 | 147.64 | 0.00 |
Flocculants | 7.081 | 7.081 | ||
Lysing Total | 1.86 | 0.10 | 80.53 | 4.45 |
Pump | 0.01 | 0.00 | 0.56 | 0.08 |
Power Supply | 1.72 | 0.10 | 74.37 | 4.37 |
Fans | 0.13 | 0.00 | 5.61 | 0.00 |
Extraction Total | 392.21 | 4.42 | 919.33 | 8.32 |
Membrane | ||||
2 Pumps | 0.60 | 0.00 | 25.88 | 0.00 |
Distillation | ||||
Feed Pump | 0.75 | 0.00 | 32.54 | 0.00 |
Vacuum Pump | 7.92 | 0.00 | 342.57 | 0.07 |
Stage 1 Heater | 2.77 | 0.09 | 119.82 | 3.92 |
Stage 2 Heater | 0.43 | 0.00 | 18.78 | 0.00 |
Chill Water | 350.42 | 4.33 | 350.42 | 4.33 |
Heptane Loss | 29.32 | 0.00 | 29.32 | 0.00 |
Refining Total | 0.01 | 0.23 | 0.11 | 10.36 |
Bio-oil refining | 0.00 | 0.22 | 0.10 | 9.73 |
Refining Materials | 0.01 | 0.00 | 0.01 | 0.62 |
Biomass Fuel Refining | 0.00 | 0.00 | 0.00 | 0.00 |
Total Input (L/kLp) | 3,540.08 | 116.19 | 53,688.61 | 1,129.97 |
Outputs | (mg/Lp) | (mg/Lp) | (mg/Lp) | (mg/Lp) |
Biocrude (mg/Lp) | 2.11 | 207.77 | 2.11 | 207.77 |
Biomass in Slurry (mg/Lp) | 164.99 | 598.50 | 164.99 | 598.50 |
Bio-oil (mg/Lp) | 2.11 | 207.77 | 2.11 | 207.77 |
Methane (mg/Lp) | 41.58 | 150.82 | 41.58 | 150.82 |
(kJ/Lp) | (kJ/Lp) | (kJ/Lp) | (kJ/Lp) | |
Total Output (kJ/Lp) | 2.37 | 16.61 | 2.37 | 16.61 |
Consumption | Experimental Case | Highly Productive Case |
Mining/Farming (Growth) (L/kL) | 3134.85 | 103.89 |
Processing/Refining (L/kL) | 405.21 | 12.30 |
Total Water Consumed per Vol. Processed (L/kL) | 3,540.06 | 116.19 |
Bio-oil Produced per Vol. Processed (kg/kL) | 0.002 | 0.21 |
Methane Produced per Vol. Processed (kg/kL) | 0.04 | 0.15 |
Energy Output per Vol. Processed (MJ/kL) | 2.37 | 16.61 |
Water Consumed per kg bio-oil (kL/kg) | 1,675.27 | 0.56 |
Water Consumed per kg methane (kL/kg) | 85.14 | 0.77 |
Water Consumed per Energy Output (L/MJ) | 1,492.85 | 7.00 |
Miles Traveled from Bio-oil per Vol. Processed (mile/ML) | 19.68 | 1,934.93 |
Miles Traveled from Methane per Vol. Processed (mile/ML) | 365.94 | 1,327.43 |
Total Miles Traveled per Vol. Processed (mile/ML) | 385.62 | 3,262.36 |
Water Consumption from Mining/Farming (Growth) (gal/mile) | 2,147.76 | 8.41 |
Water Consumption for Processing/Refining (gal/mile) | 277.62 | 1.00 |
Water Consumption per Mile (L/mile) | 9,180.07 | 35.62 |
Water Consumption per Mile (gal/mile) | 2,425.38 | 9.41 |
Water Consumption per km (L/km) | 5,737.54 | 22.26 |
Withdrawal | Experimental Case | Highly Productive Case |
Mining/Farming (Growth) (L/kL) | 52,206.77 | 1,079.51 |
Processing/Refining (L/kL) | 1,481.58 | 50.46 |
Water Withdrawn per Vol. Processed (L/kL) | 53,688.35 | 1,129.97 |
Bio-oil Produced per Vol. Processed (kg/kL) | 0.002 | 0.21 |
Methane Produced per Vol. Processed (kg/kL) | 0.04 | 0.15 |
Energy Output per Vol. Processed (MJ/kL) | 2.37 | 16.61 |
Water Withdrawn per kg bio-oil (kL/kg) | 25,407.04 | 5.44 |
Water Withdrawn per kg methane (kL/kg) | 1,291.25 | 7.49 |
Water Withdrawn per Energy Output (L/MJ) | 22,640.43 | 68.05 |
Miles Traveled from Bio-oil per Vol. Processed (mile/ML) | 19.68 | 1,934.93 |
Miles Traveled from Methane per Vol. Processed (mile/ML) | 365.94 | 1,327.43 |
Total Miles Traveled per Vol. Processed (mile/ML) | 385.62 | 3,262.36 |
Water Withdrawn from Mining/Farming (Growth) (gal/mile) | 35,768.12 | 87.42 |
Water Withdrawn for Processing/Refining (gal/mile) | 1,015.07 | 4.09 |
Water Withdrawn per Mile (L/mile) | 139,224.38 | 346.37 |
Water Withdrawn per Mile (gal/mile) | 36,783.19 | 91.51 |
Water Withdrawal per km (L/km) | 87015.23 | 216.48 |
References
- Wijffels, R.H.; Barbosa, M.J. An outlook on microalgal biofuels. Science 2010, 329, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Schenk, P.; Thomas-Hall, S.; Stephens, E.; Marx, U.; Mussgnug, J.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. A Look Back at the U.S. Department of Energy’s Aquatic Species Program, Biodiesel from Algae; NREL and U.S. Department of Energy’s Office of Fuels Development: Golden, CO, USA, 1998. [Google Scholar]
- Hall, C.A.S.; Balogh, S.; Murphy, D.J.R. What is the minimum EROI that a sustainable society must have? Energies 2009, 2, 25–47. [Google Scholar] [CrossRef]
- Mulder, K.; Hagens, N.J. Energy return on investment: toward a consistent framework. AMBIO J. Hum. Environ. 2009, 37, 74–79. [Google Scholar] [CrossRef]
- Beal, C.M.; Smith, C.H.; Webber, M.E.; Ruoff, R.S.; Hebner, R.E. A framework to report the production of renewable diesel from algae. BioEnergy Res. 2011, 4, 36–60. [Google Scholar] [CrossRef]
- Amin, S. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manag. 2009, 50, 1834–1840. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Subhadra, B.G.; Edwards, M. Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Appl. Energy 2011, 88, 3515–3523. [Google Scholar] [CrossRef]
- Collet, P.; Helias, A.; Lardon, L.; Ras, M.; Goy, R.; Steyer, J. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour. Technol. 2011, 102, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lundquist, T.J.; Woertz, I.C.; Quinn, N.W.T.; Benemann, J.R. A Realistic Technology and Engineering Assessment of Algae Biofuel Production; Energy Biosciences Institute: Berkeley, CA, USA, 2010. [Google Scholar]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol can contribute to energy and environmental goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Beal, C.M.; Hebner, R.E.; Webber, M.E.; Ruoff, R.S.; Seibert, A.F. The energy return on investment for algal biocrude: Results for a research production facility. BioEnergy Res. 2012, 5, 341–262. [Google Scholar] [CrossRef]
- Clarens, A.F.; Resurreccion, E.P.; White, M.A.; Colosi, L.M. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 2010, 44, 1813–1819. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Lardon, L.; Helias, A.; Sialve, B.; Steyer, J.; Bernard, O. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 2009, 43, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.; Klise, G.; Wu, B. Resource demand implications for US algae biofuels production scale-up. Appl. Energy 2011, 88, 3377–3388. [Google Scholar] [CrossRef]
- Beal, C.M. Constraints on Algal Biofuel Production. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, May 2011. [Google Scholar]
- Beal, C.M.; Hebner, R.E.; Romanovicz, D.; Mayer, C.C.; Connelly, R. Progression of lipid profile and cell structure in a research production pathway for algal biocrude. Renew. Energy 2012, in press. [Google Scholar]
- Jones, J.; Manning, S.; Montoya, M.; Keller, K.; Poenie, M. Analysis of Algal Lipids by HPLC and Mass Spectroscopy. J. Am. Oil Chem Soc. 2012. [Google Scholar] [CrossRef]
- Nordbäck, J.; Lundberg, E.; Christie, W.W. Separation of lipid classes from marine particulate material by HPLC on a polyvinyl alcohol-bonded stationary phase using dual-channel evaporative light-scattering detection. Mar. Chem. 1998, 60, 165–175. [Google Scholar] [CrossRef]
- Gillan, F.T.; Johns, R.B. Normal-phase hplc analysis of microbial carotenoids and neutral lipids. J. Chromatogr. Sci. 1983, 21, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Graeve, M.; Janssen, D. Improved separation and quantification of neutral and polar lipid classes by HPLC-ELSD using a monolithic silica phase: Application to exceptional marine lipids. J. Chromatogr. B 2009, 877, 1815–1819. [Google Scholar] [CrossRef] [Green Version]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Sturm, B.S.M.; Lamer, S.L. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl. Energy 2011, 88, 3499–3506. [Google Scholar] [CrossRef]
- Batan, L.; Quinn, J.; Willson, B.; Bradley, T. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ. Sci. Technol. 2010, 44, 7975–7980. [Google Scholar] [CrossRef] [PubMed]
- Beal, C.M.; Stillwell, A.S.; King, C.W.; Cohen, S.M.; Berberoglu, H.; Bhattarai, R.; Connelly, R.; Webber, M.E.; Hebner, R.E. Energy return on investment for algal biofuel production coupled with wastewater treatment. Water Environ. Res. 2012, in press. [Google Scholar]
- Beal, C.M.; Hebner, R.E.; Webber, M.E. Thermodynamic analysis of algal biofuel production. Available online: http://dx.doi.org.ezproxy.lib.utexas.edu/10.1016/j.energy.2012.05.003 (accessed on 8 June 2012).
- Weyer, K.; Bush, D.; Darzins, A.; Willson, B. Theoretical maximum algal oil production. BioEnergy Res. 2010, 3, 204–213. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Kaufmann, R.K.; Stern, D.I. Aggregation and the role of energy in the economy. Ecol. Econ. 2000, 32, 301–317. [Google Scholar] [CrossRef]
- Energy Information Agency. Annual Energy Outlook 2010: DOE/EIA-0383(2010); Energy Information Agency: Washington, DC, USA, 2010. [Google Scholar]
- King, C.W.; Webber, M.E. Water intensity of transportation. Environ. Sci. Technol. 2008, 42, 7866–7872. [Google Scholar] [CrossRef] [PubMed]
- Mulder, K.; Hagens, N.; Fisher, B. Burning water: A comparative analysis of the energy return on water invested. AMBIO J. Hum. Environ. 2010, 39, 30–39. [Google Scholar] [CrossRef]
- Oyler, J.; Catalytic Hydrothermal Gasification. Genifuel, Halethorpe, MD, USA. Personal Communication, 2010.
- Cleveland, C.J. Net energy from the extraction of oil and gas in the United States. Energy 2005, 30, 769–782. [Google Scholar] [CrossRef]
- King, C.W. Energy intensity ratios as net energy measures of United States energy production and expenditures. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Xu, L.; Brilman, D.W.F.; Withag, J.A.M.; Brem, G.; Kersten, S. Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis. Bioresour. Technol. 2011, 102, 5113–5122. [Google Scholar] [CrossRef] [PubMed]
- Natural Gas Overview: Table 6.1, EIA. Available online: http://www.eia.gov/totalenergy/data/annual/txt/ptb0601.html (accessed on 13 June 2012).
- Austin Water, Austin City Connection. Available online: http://www.austintexas.gov/department/ austin-water-utility-statistics (accessed on 14 April 2011).
- Summary Statistics for the United States: Electric Power Annual data for 2009, EIA. 2011. Available online: http://205.254.135.7/electricity/annual/archive/03482009.pdf (accessed on 8 February 2011).
- Hockstad, L.; Cook, B. 2011 Draft. U.S. Greenhouse Gas Inventory Report. 2011. Available online: http://www.epa.gov/climatechange/emissions/usinventoryreport.html (accessed on 13 June 2012). [Google Scholar]
- Huang, W. Impact of Rising Natural Gas Prices on U.S. Ammonia Supply. Available online: http://www.ers.usda.gov/publications/wrs0702/ (accessed on 31 October 2010).
- Campbell, P.K.; Beer, T.; Batten, D. Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour. Technol. 2010, 102, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C. Analysis of Innovative Feedstock Sources and Production Technologies for Renewable Fuels: Chapter 6. Algal Oil Biodiesel, EPA: XA-83379501-0; University of Texas: Austin, TX, USA, 2010. [Google Scholar]
- Ramírez, C.A.; Worrell, E. Feeding fossil fuels to the soil: An analysis of energy embedded and technological learning in the fertilizer industry. Resour. Conserv. Recycl. 2006, 46, 75–93. [Google Scholar] [CrossRef]
- Sheehan, J.; Camobreco, V.; Duffield, J.; Shapouri, H.; Graboski, M.; Tyson, K.S. An Overview of Biodiesel and Petroleum Diesel Life Cycles. 2000; Technical Report. 2000; NREL/TP-580-24772. [Google Scholar]
- Wu, H.; Fu, Q.; Giles, R.; Bartle, J. Production of mallee biomass in Western Australia: Energy balance analysis. Energy Fuels 2007, 22, 190–198. [Google Scholar] [CrossRef]
- U.S. Life-Cycle Inventory Database; NREL: Golden, CO, USA, 2008; Volume 1.6.0.
- Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N. Energy Use and Energy Intensity of the U.S. Chemical Industry; 2000; p. 40. [Google Scholar]
- Lundquist, T.J.; Woertz, I.C.; Quinn, N.W.T.; Benemann, J.R. A Realistic Technology and Engineering Assessment of Algae Biofuel Production; EBI: Berkeley, CA, USA, 2010. [Google Scholar]
- Henshaw, P.; King, C.W.; Zarnikau, J. System Energy Assessment (SEA), Defining a Standard Measure of EROI for Energy Businesses as Whole Systems. Sustainability 2011, 3, 1908–1943. [Google Scholar] [CrossRef]
- Harto, C.; Meyers, R.; Williams, E. Life cycle water use of low-carbon transport fuels. Energy Policy 2010, 38, 4933–4944. [Google Scholar] [CrossRef]
- Yang, J.; Xu, M.; Zhang, X.; Hu, Q.; Sommerfeld, M.; Chen, Y. Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour. Technol. 2010, 102, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Energy Independence and Security Act of 2007, One Hundred Tenth Congress of the United States of America. Available online: http://www.govtrack.us/congress/bills/110/hr6 (accessed on June 2012).
- Benemann, J.; Oswald, W. Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass; U.S. Department of Energy: Washington, DC, USA, 1996. [Google Scholar]
- Jorquera, O.; Kiperstok, A.; Sales, E.A.; Embiruçu, M.; Ghirardi, M.L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 2010, 101, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Kadam, K.L. Environmental implications of power generation via coal-microalgae cofiring. Energy 2002, 27, 905–922. [Google Scholar] [CrossRef]
- Pruvost, J.; van Vooren, G.; Cogne, G.; Legrand, J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour. Technol. 2009, 100, 5988–5995. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, H.; Wu, Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 2007, 98, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Biodiesel production from oleaginous microorganisms. Renew. Energy 2009, 34, 1–5. [Google Scholar] [CrossRef]
- Wang, B.; Lan, C.Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 2011, 102, 5639–5644. [Google Scholar] [CrossRef] [PubMed]
- Molina Grima, E.; Belarbi, E.H.; Acién Fernández, F.G.; Robles Medina, A.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef] [PubMed]
- Choi, J. Pilot Scale Evaluation of Algae Harvesting Technologies for Biofuel Production. M.S. Thesis, University of Texas at Austin: Austin, TX, USA, 2009. [Google Scholar]
- Umdu, E.S.; Tuncer, M.; Seker, E. Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour. Technol. 2009, 100, 2828–2831. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification—A review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Woertz, I.; Feffer, A.; Lundquist, T.; Nelson, Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J. Environ. Eng. 2009, 135, 1115–1122. [Google Scholar] [CrossRef]
- Radakovits, R.; Jinkerson, R.E.; Darzins, A.; Posewitz, M.C. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 2010, 9, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.; Jacobson, S.; Morgan, F.; Berry, D.; Church, G.; Afeyan, N. A new dawn for industrial photosynthesis. Photosynth. Res. 2011, 107, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.N.; Oyler, G.A.; Wilkinson, L.; Betenbaugh, M.J. A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 2008, 19, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Bolhouse, A.; Ozkan, A.; Berberoglu, H. Rheological Study of Algae Slurries for Minimizing Pumping Power. In Proceedings of the ASME-IMECE 2010, Vancouver, Canada, 13–18 November 2010.
- Murphy, C.; Allen, D. The energy water nexus of mass cultivation of algae. Environ. Sci. Technol. 2011, 45, 5861–5868. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.; Parsons, S.; Jefferson, B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef] [PubMed]
- Poelman, E.; De Pauw, N.; Jeurissen, B. Potential of electrolytic flocculation for recovery of micro-algae. Resour. Conserv. Recycl. 1997, 19, 1–10. [Google Scholar] [CrossRef]
- Jiménez-González, C.; Kim, S.; Overcash, M. Methodology for developing gate-to-gate Life cycle inventory information. Int. J. Life Cycle Assess. 2000, 5, 153–159. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Beal, C.M.; Hebner, R.E.; Webber, M.E.; Ruoff, R.S.; Seibert, A.F.; King, C.W. Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results. Energies 2012, 5, 1943-1981. https://doi.org/10.3390/en5061943
Beal CM, Hebner RE, Webber ME, Ruoff RS, Seibert AF, King CW. Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results. Energies. 2012; 5(6):1943-1981. https://doi.org/10.3390/en5061943
Chicago/Turabian StyleBeal, Colin M., Robert E. Hebner, Michael E. Webber, Rodney S. Ruoff, A. Frank Seibert, and Carey W. King. 2012. "Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results" Energies 5, no. 6: 1943-1981. https://doi.org/10.3390/en5061943
APA StyleBeal, C. M., Hebner, R. E., Webber, M. E., Ruoff, R. S., Seibert, A. F., & King, C. W. (2012). Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results. Energies, 5(6), 1943-1981. https://doi.org/10.3390/en5061943