Household Biogas Digesters—A Review
Abstract
:1. Introduction
1.1. Biogas
1.2. Digestion Factors
1.3. A Brief Global View on Small Anaerobic Digesters
2. Household Digesters
2.1. Fixed Dome Digesters
2.2. Floating Drum Digesters
2.3. Plug Flow Digesters
2.4. Comparisons of Different Digesters
2.5. Other Digesters
3. Parameters in Digesters Operation
3.1. Materials for Construction
Material | Modifications | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Poly vinyl chloride (PVC) | Red mud PVC (mixed with aluminum) | Less weight Easily portable | Short life span of plastics | [59,68,70,72,73,87,88,89,90] |
Polyethylene (PE) | PE with UV filter | PE is much cheaper compared to PVC | ||
Neoprene and rubber | Reinforced with nylon | Weather resistance elastic | Expensive Low pressure Less life span | [72,82,91] |
Bricks and concrete | Pre fired earthen rings, lime concrete, slag concrete, fired clay, bricks, reinforced concrete, Ferro cement (crack proof) | Everlasting, less maintenance costs | Gas could escape through concrete pores when pressure increases. Built underground. Difficult to clean. Occupies more space. | [18,52,63,86,92,93] |
Bamboo and wood supports | Usually a support material, Reinforced with flax | Locally available material | Can break easily | [54] |
Steel drum | Produce gas at a constant flow Leak proof | Corrosion Heavy weight of gas holder | [64,91] |
3.2. Effect of Temperature
3.3. Substrate Consumption
Main substrate | Substrate classification | Dry matter (%) | Ash (%) | Total digestible nutrients (%) | Biogas yield | References |
---|---|---|---|---|---|---|
Manure | Cow | 38 | 14 | 92 | 0.6–0.8 m3/kg TS | [54,60,61,66,67,68,75,86,89,92,110,112,113,115] |
Pig | 20–25 | NA | NA | 0.27–0.45 m3/kg TS | [70,89,112,116,117] | |
Buffalo | 14 | NA | NA | NA | [81,89] | |
Poultry | 89 | 33 | 38 | 0.3–0.8 m3/kg TS | [64,118,119] | |
Horse | 28 | NA | NA | 0.4–0.6 m3/kg TS | [120] | |
Fecal matter | Human excreta | 20 | NA | NA | NA | [27,54] |
Night soil | NA | NA | NA | NA | [93,94,121] | |
Agricultural residues | Rice straw | 91 | 13 | 40 | 0.55–0.62 m3/kg TS | [93] |
Wheat straw | 91 | 8 | 43 | 0.188 m3/kg VS | [64,122] | |
Maize straw | 86 | NA | NA | 0.4–1.0 m3/kg TS | [28] | |
Grass | 88 | 6 | 58 | 0.28–0.55 m3/kg VS | [55,118,119] | |
Mango leaves | NA | NA | NA | 0.6 m3/kg TS | [92] | |
Foliage of parthenium | NA | NA | NA | NA | ||
Coffee pulp | 28 | 8 | NA | 0.300– 0.450 m3/kg VS | [118,119,123] | |
Corn stalk | 80 | 7 | 54 | 0.350–0.480 m3/kg VS | ||
Cassava peels (residues) | NA | NA | NA | 0.661 m3/kg VS (0.132 m3/kg VS) | [88,124,125,126] | |
Food wastes | Household grease | [111] | ||||
Whey | 94 | 10 | 82 | NA | ||
Vegetable waste | 5–20 | NA | NA | 0.4 m3/kg TS | [16,54,69] | |
Fruit wastes(apple) | 17 | 2 | 70 | NA | [64,69] | |
Kitchen/restaurant wastes | 27/13 | 13/8 | NA | 0.506/0. 650 m3 CH4/kg VS | [110,111,127,128,129,130,131] | |
Left over’s food | 14–18 | NA | NA | 0.2–0.5 m3/kg TS | [28] | |
Egg waste | 25 | NA | NA | 0.97–0.98 m3/kg TS | [28] | |
Cereals | 85–90 | NA | NA | 0.4–0.9 m3/kg TS | [28] | |
Aquatic plants or sea weeds | Algae | NA | NA | NA | 0.38–0.55 m3/kg VS | [132] |
Water hyacinth | 7 | NA | NA | 0.2–0.3 m3/kg VS | [93,133] | |
Giant kelp | NA | NA | NA | NA | [118,119] | |
Caboma | NA | NA | NA | 0.221 m3/kg VS | [133] | |
Salvinia | NA | NA | NA | 0.155 m3/kg VS | [133] |
3.4. Loading Rate and Yield of Biogas Produced
3.5. Biogas Storage and Maintenance of Digesters
4. Applications of Biogas in Household Digesters
4.1. Cooking and Heating
4.2. Biogas Stoves
4.3. Fertilizer
4.4. Lighting and Power Generation
4.5. Other Applications
5. Disadvantages
6. Economics and Policies
7. Environmental and Social Aspects of Biogas Digesters
8. Discussion
9. Conclusions
Acknowledgments
References
- Singh, K.J.; Sooch, S.S. Comparative study of economics of different models of family size biogas plants for state of punjab, India. Energy Convers. Manag. 2004, 45, 1329–1341. [Google Scholar] [CrossRef]
- Amigun, B.; Sigamoney, R.; Von Blottnitz, H. Commercialisation of biofuel industry in Africa: A review. Renew. Sustain. Energy Rev. 2008, 12, 690–711. [Google Scholar] [CrossRef]
- Pagar Savita, D. Design, Development and Performance Evaluation of Biogas Stoves; Maharana Pratap University of Agriculture and Technology: Udaipur, India, 2008. [Google Scholar]
- Zhou, Z.; Wu, W.; Chen, Q.; Chen, S. Study on sustainable development of rural household energy in northern China. Renew. Sustain. Energy Rev. 2008, 12, 2227–2239. [Google Scholar] [CrossRef]
- Li, G.Z.; Niu, S.W.; Liang, Y.H. Estimate on the Ecological and Economic Benefits of Rural Household Biogas Construction Project in Loess Hilly Region, China. In Proceedings of International Conference on Wireless Communications: Networking and Mobile Computing, 21–25 September 2007; Volume 1–15, pp. 5075–5078.
- Li, G.; Niu, S.; Ma, L.; Zhang, X. Assessment of environmental and economic costs of rural household energy consumption in loess hilly region, gansu province, China. Renew. Energy 2009, 34, 1438–1444. [Google Scholar] [CrossRef]
- Parikh, J.K.; Parikh, K.S. Mobilization and impacts of bio-gas technologies. Energy 1977, 2, 441–455. [Google Scholar] [CrossRef]
- Starke, L. State of the World 2004; World Watch Institute: Washington, DC, USA, 2004. [Google Scholar]
- Ravindranath, N.H. Renewable Energy and Environment: A Policy Analysis for India; Tata McGraw-Hill Pub. Co.: Uttar Pradesh, India, 2000. [Google Scholar]
- Zhang, J.; Mauzerall, D.L.; Zhu, T.; Liang, S.; Ezzati, M.; Remais, J.V. Environmental health in China: Progress towards clean air and safe water. Lancet 2010, 375, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- NAS. Methane Generation from Human, Animal and Agricultural Waste; National Academy of Sciences: Washington, DC, USA, 1977. [Google Scholar]
- Bioenergylists. Available online: http://www.stoves.bioenergylists.org (accessed on 25 March 2012).
- Luijten, C.C.M.; Kerkhof, E. Jatropha oil and biogas in a dual fuel ci engine for rural electrification. Energy Convers. Manag. 2011, 52, 1426–1438. [Google Scholar] [CrossRef]
- Bhattacharya, S.C.; Abdul Salam, P.; Sharma, M. Emissions from biomass energy use in some selected asian countries. Energy 2000, 25, 169–188. [Google Scholar]
- Xiaohua, W.; Jingfei, L. Influence of using household biogas digesters on household energy consumption in rural areas—A case study in Lianshui County in China. Renew. Sustain. Energy Rev. 2005, 9, 229–236. [Google Scholar]
- Martins das Neves, L.C.; Converti, A.; Vessoni Penna, T.C. Biogas production: New trends for alternative energy sources in rural and urban zones. Chem. Eng. Technol. 2009, 32, 1147–1153. [Google Scholar] [CrossRef]
- VITA. Testing the Efficiency of Wood Burning Stoves: International Standards; Volunteers in Technical Assitance, Inc.: Arlington, TX, USA, 1985. [Google Scholar]
- Shian, S.-T.; Chang, M.-C.; Ye, Y.-T.; Chang, W. The construction of simple biogas digesters in the province of Szechwan, China. Agric. Wastes 1979, 1, 247–258. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, R.B.; Kumar, B.; Balachandra, P.; Ravindranath, N.H.; Raghunandan, B.N. Decentralised renewable energy: Scope, relevance and applications in the Indian context. Energy Sustain. Dev. 2009, 13, 4–10. [Google Scholar] [CrossRef]
- Itodo, I.N.; Agyo, G.E.; Yusuf, P. Performance evaluation of a biogas stove for cooking in nigeria. J. Energy S. Afr. 2007, 18, 14–18. [Google Scholar]
- Yu, L.; Yaoqiu, K.; Ningsheng, H.; Zhifeng, W.; Lianzhong, X. Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation. Renew. Energy 2008, 33, 2027–2035. [Google Scholar] [CrossRef]
- Singh, R.B. Bio-Gas Plant: Design with Specifications; Gobar Gas Research Station: Ajitmal, India, 1973. [Google Scholar]
- Singh, R.B. Bio-Gas Plant: Generating mEthane from Organic Wastes; Gobar Gas Research Station: Ajitmal, India, 1974. [Google Scholar]
- Sathianathan, M.A. Bio-Gas: Achievements & Challenges; Association of Voluntary Agencies for Rural Development: New Delhi, India, 1975. [Google Scholar]
- Meynell, P.J. Methane: Planning A Digester; Sochen Books: Prison Stable Court: Dorset, Clarington, ON, Canada, 1976. [Google Scholar]
- Santerre, M.T.; Smith, K.R. Measures of appropriateness: The resource requirements of anaerobic digestion (biogas) systems. World Dev. 1982, 10, 239–261. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; Wiley Online Library: Weinheim, Germany, 2008. [Google Scholar]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley & Sons: Chichester, UK, 2003; Volume 3. [Google Scholar]
- Yadvika; Santosh; Sreekrishnan, T.R.; Kohli, S.; Rana, V. Enhancement of biogas production from solid substrates using different techniques––A review. Bioresour. Technol. 2004, 95, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gijzen, H.J. Anaerobic digestion for sustainable development: A natural approach. Water Sci. Technol. 2002, 45, 321–328. [Google Scholar] [PubMed]
- Gijzen, H.J. Anaerobes, aerobes and phototrophs: A winning team for wastewater management. Water Sci. Technol. 2001, 44, 123–132. [Google Scholar] [PubMed]
- Green, J.M.; Sibisi, M.N.T. Domestic Biogas Digesters: A Comparative Study. In Proceedings of Domestic Use of Energy Conference, Cape Town, South Africa, 2–3 April 2002; pp. 33–38.
- Hall, D.O.; Moss, P.A. Biomass for energy in developing countries. Geojournal 1983, 7, 5–14. [Google Scholar] [CrossRef]
- Georgakakis, D.; Christopoulou, N.; Chatziathanassiou, A.; Venetis, T. Development and use of an economic evaluation model to assess establishment of local centralized rural biogas plants in Greece. Appl. Biochem. Biotechnol. 2003, 109, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Sommer, S.G.; Christensen, K.V. A review of the biogas industry in China. Energy Policy 2011, 39, 6073–6081. [Google Scholar] [CrossRef]
- Thien Thu, C.T.; Cuong, P.H.; Hang, L.T.; Chao, N.V.; Anh, L.X.; Trach, N.X.; Sommer, S.G. Manure management practices on biogas and non-biogas pig farms in developing countries—Using livestock farms in Vietnam as an example. J. Clean. Prod. 2012, 27, 64–71. [Google Scholar] [CrossRef]
- Austin, G.; Morris, G. Biogas Production in Africa. In Bioenergy for Sustainable Development in Africa; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 103–115. [Google Scholar]
- NDRC. Medium and Long-Term Development Plan for Renewable Energy in China; National Development and Reform Commission: Beijing, China, 2007.
- Khoiyangbam, R.S. Environmental implications of biomethanation in conventional biogas plants. Iran. J. Energy Environ. 2011, 2, 181–187. [Google Scholar]
- Sarkar, A.N. Research and development work in biogas technology. J. Sci. Ind. Res. 1982, 41, 279–291. [Google Scholar]
- Snv World. Available online: http://www.snvworld.org (accessed on 23 March 2012).
- U.S. Farm Anaerobic Digestion Systems: A 2010 Snapshot; EPA: Washington, DC, USA, 2010.
- Wilkinson, K.G. A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 2011, 35, 1613–1622. [Google Scholar] [CrossRef]
- Raven, R.P.J.M.; Gregersen, K.H. Biogas plants in denmark: Successes and setbacks. Renew. Sustain. Energy Rev. 2007, 11, 116–132. [Google Scholar] [CrossRef]
- Iea-biogas. Available online: http://www.iea-biogas.net (accessed on 25 March 2012).
- Amigun, B.; von Blottnitz, H. Capital cost prediction for biogas installations in africa: Lang factor approach. Environ. Prog. Sustain. Energy 2009, 28, 134–142. [Google Scholar] [CrossRef]
- Africa Biogas. Available online: http://africabiogas.org (accessed on 23 March 2012).
- Parawira, W. Biogas technology in Sub-Saharan Africa: Status, prospects and constraints. Rev. Environ. Sci. Biotechnol. 2009, 8, 187–200. [Google Scholar] [CrossRef]
- Omer, A.M.; Fadalla, Y. Biogas energy technology in sudan. Renew. Energy 2003, 28, 499–507. [Google Scholar] [CrossRef]
- Bin, C. The current status of agricultural geothermal utilization in China. Biomass 1989, 20, 69–76. [Google Scholar] [CrossRef]
- Zhang, D. An analysis of domestic biogas storage installations in China. Biomass 1989, 20, 61–67. [Google Scholar] [CrossRef]
- Sasse, L.; Kellner, C.; Kimaro, A. Improved Biogas Unit for Developing Countries; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH; Vieweg & Sohn Verlagsgesellschaft Braunschweig: Nairobi, Kilimani, 1991. [Google Scholar]
- Gautam, R.; Baral, S.; Herat, S. Biogas as a sustainable energy source in nepal: Present status and future challenges. Renew. Sustain. Energy Rev. 2009, 13, 248–252. [Google Scholar] [CrossRef]
- Daxiong, Q.; Shuhua, G.; Baofen, L.; Gehua, W. Diffusion and innovation in the Chinese biogas program. World Dev. 1990, 18, 555–563. [Google Scholar] [CrossRef]
- Tomar, S.S. Status of biogas plant in India. Renew. Energy 1994, 5, 829–831. [Google Scholar] [CrossRef]
- Adeoti, O.; Ilori, M.O.; Oyebisi, T.O.; Adekoya, L.O. Engineering design and economic evaluation of a family-sized biogas project in Nigeria. Technovation 2000, 20, 103–108. [Google Scholar] [CrossRef]
- Akinbami, J.F.K.; Ilori, M.O.; Oyebisi, T.O.; Akinwumi, I.O.; Adeoti, O. Biogas energy use in nigeria: Current status, future prospects and policy implications. Renew. Sustain. Energy Rev. 2001, 5, 97–112. [Google Scholar] [CrossRef]
- Anjan, K.K. Development and evaluation of a fixed dome plug flow anaerobic digester. Biomass 1988, 16, 225–235. [Google Scholar] [CrossRef]
- Aburas, R.; Hammad, M.; Abu-Reesh, I.; Hiary, S.E.; Qousous, S. Construction and operation of a demonstration biogas plant, problems and prospects. Bioresour. Technol. 1995, 53, 101–104. [Google Scholar] [CrossRef]
- Aburas, R.; Hammad, M.A.; Hiary, S.E.; Qousous, S.; Abu-Reesh, I. Construction and operation of a demonstration biogas plant, problems and prospects. Energy Convers. Manag. 1996, 37, 611–614. [Google Scholar] [CrossRef]
- Kanwar, S.S.; Gupta, R.K.; Guleri, R.L.; Singh, S.P. Performance evaluation of a 1 m3 modified, fixed-dome Deenbandhu biogas plant under hilly conditions. Bioresour. Technol. 1994, 50, 239–241. [Google Scholar] [CrossRef]
- Jash, T.; Basu, S. Development of a mini-biogas digester for lighting in India. Energy 1999, 24, 409–411. [Google Scholar] [CrossRef]
- Mohammad, N. Biogas plants construction technology for rural areas. Bioresour. Technol. 1991, 35, 283–289. [Google Scholar] [CrossRef]
- Werner, U.; Stöhr, U.; Hees, N. Biogas Plants in Animal Husbandry; Deutsches Zentrum für Entwicklungstechnologien-GATE: Bonn, Germany, 1989. [Google Scholar]
- Gosling, D. Biogas for thailand’s rural development: Transferring the technology. Biomass 1982, 2, 309–316. [Google Scholar]
- Singh, N.; Gupta, R.K. Community biogas plants in India. Biol. Wastes 1990, 32, 149–153. [Google Scholar] [CrossRef]
- Ferrer, I.; Garfí, M.; Uggetti, E.; Ferrer-Martí, L.; Calderon, A.; Velo, E. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenergy 2011, 35, 1668–1674. [Google Scholar] [CrossRef]
- Bouallagui, H.; Ben Cheikh, R.; Marouani, L.; Hamdi, M. Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresour. Technol. 2003, 86, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Gamiz, M.; Almeida, M.; Ruiz, A. Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru). Waste Manag. (Oxf.) 2009, 29, 168–173. [Google Scholar] [CrossRef]
- Garfí, M.; Gelman, P.; Comas, J.; Carrasco, W.; Ferrer, I. Agricultural reuse of the digestate from low-cost tubular digesters in rural andean communities. Waste Manag. (Oxf.) 2011, 31, 2584–2589. [Google Scholar] [CrossRef]
- An, B.X.; Rodriguez, L.; Sarwatt, S.V.; Preston, T.R.; Dolberg, F. Installation and performance of low-cost polyethylene tube biodigesters on small-scale farms. Rev. Mond. Zootech. 1997, 88, 38–47. [Google Scholar]
- Lansing, S.; Botero, R.B.; Martin, J.F. Waste treatment and biogas quality in small-scale agricultural digesters. Bioresour. Technol. 2008, 99, 5881–5890. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, A. Waste to Energy: Opportunities and Challenges for Developing and Transition Economies (Green Energy and Technology); Springer: Berlin, Germany, 2012. [Google Scholar]
- Kalia, A.K.; Kanwar, S.S. Long-term evaluation of a fixed dome Janata biogas plant in hilly conditions. Bioresour. Technol. 1998, 65, 61–63. [Google Scholar] [CrossRef]
- Agstar Guide to Operational Systems; U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- Lusk, P.D. Methane Recovery from Animal Manures: The Current Opportunities Casebook; National Renewable Energy Laboratory Colarado: Golden, CO, USA, 1998; Volume 3.
- Cantrell, K.B.; Ducey, T.; Ro, K.S.; Hunt, P.G. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 2008, 99, 7941–7953. [Google Scholar] [CrossRef] [PubMed]
- Beddoes, J.C.; Bracmort, K.S.; Burn, R.B.; Lazarus, W.F. An Analysis of Energy Production Costs from Anaerobic Digestion Systems on Us Livestock Production Facilities; Natural Resources Conservation Service: Washington, DC, USA, 2007.
- Moog, F.A.; Avilla, H.F.; Agpaoa, E.V.; Valenzuela, F.G.; Concepcion, F.C. Promotion and utilisation of polyethylene biodigester in smallhold farming systems in the Philippines. Livest. Res. Rural Dev. 1997, 9. [Google Scholar]
- Hamad, M.A.; Abdel Dayem, A.M.; El Halwagi, M.M. Evaluation of the performance of two rural biogas units of Indian and Chinese design. Energy Agric. 1981, 1, 235–250. [Google Scholar] [CrossRef]
- Kanwar, S.S.; Guleri, R.L. Performance evaluation of a family-size, rubber-balloon biogas plant under hilly conditions. Bioresour. Technol. 1994, 50, 119–121. [Google Scholar] [CrossRef]
- Singh, R.; Anand, R.C. Comparative performances of Indian small solid-state and conventional anaerobic digesters. Bioresour. Technol. 1994, 47, 235–238. [Google Scholar] [CrossRef]
- Safley, L.M., Jr.; Westerman, P.W. Performance of a low temperature lagoon digester. Bioresour. Technol. 1992, 41, 167–175. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, S.; Wang, Y.; Wang, R. Advantages of the integrated pig-biogas-vegetable greenhouse system in north China. Ecol. Eng. 2005, 24, 175–183. [Google Scholar] [CrossRef]
- Anand, R.C.; Singh, R. A simple technique, charcoal coating around the digester, improves biogas production in winter. Bioresour. Technol. 1993, 45, 151–152. [Google Scholar] [CrossRef]
- Lansing, S.; Víquez, J.; Martínez, H.; Botero, R.; Martin, J. Quantifying electricity generation and waste transformations in a low-cost, plug-flow anaerobic digestion system. Ecol. Eng. 2008, 34, 332–348. [Google Scholar] [CrossRef]
- Garfí, M.; Ferrer-Martí, L.; Velo, E.; Ferrer, I. Evaluating benefits of low-cost household digesters for rural andean communities. Renew. Sustain. Energy Rev. 2012, 16, 575–581. [Google Scholar] [CrossRef]
- Xavier, S.; Nand, K. A preliminary study on biogas production from cowdung using fixed-bed digesters. Biol. Wastes 1990, 34, 161–165. [Google Scholar] [CrossRef]
- Lansing, S.; Martin, J.F.; Botero, R.B.; da Silva, T.N.; da Silva, E.D. Methane production in low-cost, unheated, plug-flow digesters treating swine manure and used cooking grease. Bioresour. Technol. 2010, 101, 4362–4370. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Vatsa, D.K.; Verma, H.N. Problems with biogas plants in himachal pradesh. Bioresour. Technol. 1997, 59, 69–71. [Google Scholar] [CrossRef]
- Shyam, M.; Sharma, P.K. Solid-state anaerobic digestion of cattle dung and agro-residues in small-capacity field digesters. Bioresour. Technol. 1994, 48, 203–207. [Google Scholar] [CrossRef]
- Polprasert, C.; Edwards, P.; Rajput, V.S.; Pacharaprakiti, C. Integrated biogas technology in the tropics 1. Performance of small-scale digesters. Waste Manag. Res. 1986, 4, 197–213. [Google Scholar] [CrossRef]
- Singh, L.; Maurya, M.S.; Ramana, K.V.; Alam, S.I. Production of biogas from night soil at psychrophilic temperature. Bioresour. Technol. 1995, 53, 147–149. [Google Scholar] [CrossRef]
- Singh, L.; Maurya, M.; Ram, M.S.; Alam, S. Biogas production from night soil: Effects of loading and temperature. Bioresour. Technol. 1993, 45, 59–61. [Google Scholar] [CrossRef]
- Stevens, M.A.; Schulte, D.D. Low temperature anaerobic digestion of swine manure. J. Environ. Eng. Div. 1979, 105, 33–42. [Google Scholar]
- Misra, U.; Singh, S.; Singh, A.; Pandey, G.N. A new temperature controlled digester for anaerobic digestion for biogas production. Energy Convers. Manag. 1992, 33, 983–986. [Google Scholar] [CrossRef]
- Sibisi, N.T.; Green, J.M. A floating dome biogas digester: Perceptions of energising a rural school in Maphephetheni, Kwazulu-Natal. J. Energy S. Afr. 2005, 16, 45–52. [Google Scholar]
- Ramana, K.V.; Singh, L. Microbial degradation of organic wastes at low temperatures. Def. Sci. J. Newdelhi 2000, 50, 382–390. [Google Scholar]
- Jayashankar, B.C.; Kishor, J.; Goyal, I.C.; Sawhney, R.L.; Sodha, M.S. Solar assisted biogas plants iv: Optimum area for blackening and double glazing over a fixed-dome biogas plant. Int. J. Energy Res. 1989, 13, 193–205. [Google Scholar] [CrossRef]
- Subramanian, S.K. Bio-Gas Systems in Asia; Management Development Institute: Newdelhi, India, 1977; Volume 11. [Google Scholar]
- Singh, D.; Singh, K.K.; Bansal, N.K. Heat loss reduction from the gas holder/fixed gas dome of a community-size biogas plant. Int. J. Energy Res. 1985, 9, 417–430. [Google Scholar] [CrossRef]
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Shah, N. The role of bio-energy utilisation in sustainable development. Int. J. Glob. Energy Issues 1997, 9, 365–381. [Google Scholar]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Yen, H.-W.; Brune, D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 2007, 98, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Murto, M.; Björnsson, L.; Mattiasson, B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J. Environ. Manag. 2004, 70, 101–107. [Google Scholar] [CrossRef]
- Gelegenis, J.; Georgakakis, D.; Angelidaki, I.; Mavris, V. Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew. Energy 2007, 32, 2147–2160. [Google Scholar] [CrossRef]
- Llabrés-Luengo, P.; Mata-Alvarez, J. Influence of temperature, buffer, composition and straw particle length on the anaerobic digestion of wheat straw-pig manure mixtures. Resour. Conserv. Recycl. 1988, 1, 27–37. [Google Scholar] [CrossRef]
- Li, R.; Chen, S.; Li, X.; Saifullah Lar, J.; He, Y.; Zhu, B. Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels 2009, 23, 2225–2228. [Google Scholar] [CrossRef]
- Lansing, S.; Martin, J.F.; Botero, R.B.; Nogueira da Silva, T.; Dias da Silva, E. Wastewater transformations and fertilizer value when co-digesting differing ratios of swine manure and used cooking grease in low-cost digesters. Biomass Bioenergy 2010, 34, 1711–1720. [Google Scholar] [CrossRef]
- Garfí, M.; Ferrer-Martí, L.; Perez, I.; Flotats, X.; Ferrer, I. Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecol. Eng. 2011, 37, 2066–2070. [Google Scholar] [CrossRef]
- Levi, K.L.; Dorothy, M. Assessment of the effect of mixing pig and cow dung on biogas yield. Agric. Eng. Int.: CIGR J. 2009, 11, 1–7. [Google Scholar]
- Preston, R.L. Feed composition tables. Beef Mag. 2010, 47–54. [Google Scholar]
- Khandelwal, K.C.; Maithani, P.C. Guide to Family Size Biogas Plants; Department of Non-Conventional Energy Sources: New Delhi, India, 1989.
- Garfí, M.; Ferrer-Martí, L.; Villegas, V.; Ferrer, I. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude. Bioresour. Technol. 2011, 102, 6356–6359. [Google Scholar] [CrossRef] [PubMed]
- An, B.X.; Preston, T.R. Gas production from pig manure fed at different loading rates to polyethylene tubular biodigesters. Livest. Res. Rural Dev. 1999, 11. [Google Scholar]
- Nijaguna, B.T. Biogas Technology; New Age International: Delhi, India, 2006. [Google Scholar]
- Staffen, R.; Sudar, O.; Braun, R. Feedstock for Anaerobic Digestion; AD-NETT: Herning, Denmark, 2000. [Google Scholar]
- Kalia, A.K.; Singh, S.P. Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour. Technol. 1998, 64, 63–66. [Google Scholar] [CrossRef]
- Sai Ram, M.; Singh, L.; Alam, S. Effect of sulfate and nitrate on anaerobic degradation of night soil. Bioresour. Technol. 1993, 45, 229–232. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T.; Kumar, R. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 2012, 43, 273–282. [Google Scholar] [CrossRef]
- Carlsson, M.; Uldal, M. Substrathandbok för Biogasproduktion; Svenskt Gastekniskt Center: Malmö, Sweden, 2009. [Google Scholar]
- Zvinavashe, E.; Elbersen, H.W.; Slingerland, M.; Kolijn, S.; Sanders, J.P.M. Cassava for food and energy: Exploring potential benefits of processing of cassava into cassava flour and bioenergy at farmstead and community levels in rural mozambique. Biofuels Bioprod. Biorefining 2011, 5, 151–164. [Google Scholar] [CrossRef]
- Cuzin, N.; Farinet, J.L.; Segretain, C.; Labat, M. Methanogenic fermentation of cassava peel using a pilot plug flow digester. Bioresour. Technol. 1992, 41, 259–264. [Google Scholar] [CrossRef]
- Zhang, Q.; He, J.; Tian, M.; Mao, Z.; Tang, L.; Zhang, J.; Zhang, H. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour. Technol. 2011, 102, 8899–8906. [Google Scholar] [CrossRef] [PubMed]
- De Baere, L. Anaerobic digestion of solid waste: State-of-the-art. Water Sci. Technol. 2000, 283–290. [Google Scholar]
- Pang, Y.Z.; Liu, Y.P.; Li, X.J.; Wang, K.S.; Yuan, H.R. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy Fuels 2008, 22, 2761–2766. [Google Scholar] [CrossRef]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Hessami, M.A.; Christensen, S.; Gani, R. Anaerobic digestion of household organic waste to produce biogas. Renewable Energy 1996, 9, 954–957. [Google Scholar] [CrossRef]
- Christensen, S. Appropriate Technology Methods for the Anaerobic Digestion of Organic Household Waste; Monash University: Clayton, Australia, 1995. [Google Scholar]
- Muñoz, R.; Guieysse, B. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.; Rounsefell, B.; Grinham, A.; Clarke, W.; Udy, J. Anaerobic digestion of harvested aquatic weeds: Water hyacinth (Eichhornia crassipes), Cabomba (Cabomba caroliniana) and Salvinia (Salvinia molesta). Ecol. Eng. 2010, 36, 1459–1468. [Google Scholar] [CrossRef]
- Jash, T.; Ghosh, D.N. Studies on residence time distribution in cylindrical and rectangular biogas digesters. Energy 1990, 15, 987–991. [Google Scholar] [CrossRef]
- Martí-Herrero, J. Reduced hydraulic retention times in low-cost tubular digesters: Two issues. Biomass Bioenergy 2011, 35, 4481–4484. [Google Scholar] [CrossRef]
- Ezekoye, V.A.; Okeke, C.E. Design, construction, and performance evaluation of plastic biodigester and the storage of biogas. Pac. J. Sci. Technol. 2006, 7, 176–184. [Google Scholar]
- Moulik, T.K.; Srivastava, U.K.; Shingi, P.M. Bio-Gas System in India: A Socio-Economic Evaluation; Centre for Management in Agriculture, Indian Institute of Management: Ahmedabad, India, 1978. [Google Scholar]
- Aguilar, F.X. How to Install a Polyethylene Biogas Plant; Royal Agricultural College: Cirencester, UK, 2001. [Google Scholar]
- Rodriguez, L.; Preston, T. Biodigester Installation Manual; Food & Agriculture Organization: Roma, Italia, 2001. [Google Scholar]
- Chynoweth, D.P.; Owens, J.M.; Legrand, R. Renewable methane from anaerobic digestion of biomass. Renew. Energy 2001, 22, 1–8. [Google Scholar] [CrossRef]
- Schwart, R.; Jackson, R.; Herbst, B.; Whitney, R.; Lacewell, R.; Mjelde, J. Methane Generation; Department of Agricultural Economics, Texas A&M University: Galveston, TX, USA, 2005. [Google Scholar]
- Barnett, A.; Pyle, L.; Subramanian, S.K. Biogas Technology in the Third World: A Multi-Disciplinary Review; International Development Research Centre: Ottawa, Canada, 1978. [Google Scholar]
- Buren, A.V. A Chinese Biogas Manual; Intermediate Technology Publications: Rugby, UK, 1979. [Google Scholar]
- Van Buren, A.; Pyle, L.; Crook, M. A Chinese Biogas Manual: Popularising Technology in the Countryside; Intermediate Technology Publications: Rugby, UK, 1979. [Google Scholar]
- Laichena, J.K.; Wafula, J.C. Biogas technology for rural households in Kenya. OPEC Rev. 1997, 21, 223–244. [Google Scholar] [CrossRef]
- Heltberg, R. Household Fuel and Energy Use in Developing Countries—A Multicountry Study; Oil and Gas Policy Division, The World Bank: Washington, DC, USA, 2003. [Google Scholar]
- United Nations Development Programme (UNDP). Access of the Poor to Clean Household Fuels in India; The World Bank: Washington, DC, USA, 2003; p. 94. [Google Scholar]
- Axaopoulos, P.; Panagakis, P. Energy and economic analysis of biogas heated livestock buildings. Biomass Bioenergy 2003, 24, 239–248. [Google Scholar] [CrossRef]
- Tasdemiroglu, E. Economics of biogas space heating systems in rural Turkey. Bioresour. Technol. 1991, 36, 147–155. [Google Scholar] [CrossRef]
- He, P.J. Anaerobic digestion: An intriguing long history in China. Waste Manag. (Oxf.) 2010, 30, 549–550. [Google Scholar] [CrossRef]
- CES. Efficiency Measurement of Biogas, Kerosene and Lpg Stoves; Tribhuvan University: Kathmandu, Nepal, 2001. [Google Scholar]
- Chan, U.S. State of the Art Review on the Integrated Use of Anaerobic Processes in China; International Reference Center for Waste Disposal: Dubendorf, Switzerland, 1982. [Google Scholar]
- Chandra, A.; Tiwari, G.N.; Srivastava, V.K.; Yadav, Y.P. Performance evaluation of biogas burners. Energy Convers. Manag. 1991, 32, 353–358. [Google Scholar] [CrossRef]
- Kurchania, A.K.; Panwar, N.L.; Pagar, S.D. Development of domestic biogas stove. Biomass Convers. Biorefin. 2011, 1, 99–103. [Google Scholar] [CrossRef]
- Namasivayam, C.; Yamuna, R. Waste biogas residual slurry as an adsorbent for the removal of Pb (ii) from aqueous solution and radiator manufacturing industry wastewater. Bioresour. Technol. 1995, 52, 125–131. [Google Scholar] [CrossRef]
- Rodríguez, L.; Preston, T.R. Use of effluent from low-cost plastic biodigesters as fertilizer for duck weed ponds. Livest. Res. Rural Dev. 1996, 8. Number 2. [Google Scholar]
- Balasubramanian, P.; Kasturi Bai, R. Biogas-plant effluent as an organic fertiliser in fish polyculture. Bioresour. Technol. 1994, 50, 189–192. [Google Scholar] [CrossRef]
- Integrated Agriculture-Aquaculture: A Primer; Food & Agriculture Organization, International Center for Living Aquatic Resources Management and International Institute of Rural Reconstruction: Silang, Philippines, 2001.
- Duc, P.M.; Wattanavichien, K. Study on biogas premixed charge diesel dual fuelled engine. Energy Convers. Manag. 2007, 48, 2286–2308. [Google Scholar] [CrossRef]
- Bari, S. Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine. Renew. Energy 1996, 9, 1007–1010. [Google Scholar] [CrossRef]
- Henham, A.; Makkar, M.K. Combustion of simulated biogas in a dual-fuel diesel engine. Energy Convers. Manag. 1998, 39, 2001–2009. [Google Scholar] [CrossRef]
- Tippayawong, N.; Promwungkwa, A.; Rerkkriangkrai, P. Long-term operation of a small biogas/diesel dual-fuel engine for on-farm electricity generation. Biosyst. Eng. 2007, 98, 26–32. [Google Scholar] [CrossRef]
- Tippayawong, N.; Promwungkwa, A.; Rerkkriangkrai, P. Durability of a small agricultural engine on biogas/diesel dual fuel operation. Iran. J. Sci. Technol. 2010, 34, 167–177. [Google Scholar]
- Reddy, A.K.N. Lessons from the pura community biogas project. Energy Sustain. Dev. 2004, 8, 68–73. [Google Scholar] [CrossRef]
- Jawurek, H.H.; Lane, N.W.; Rallis, C.J. Biogas/petrol dual fuelling of si engine for rural third world use. Biomass 1987, 13, 87–103. [Google Scholar] [CrossRef]
- Khadi and Village Industries Commission and Its Non-Conventional Energy Programmes; Khadi and Village Industries Commission: Bombay, India, 1993.
- Lichtman, R.J. Biogas Systems in India; Volunteers in Technical Assistance: Arlington, VA, USA, 1983. [Google Scholar]
- Vijay, V.K.; Prasad, R.; Singh, J.P.; Sorayan, V.P.S. A case for biogas energy application for rural industries in India. Renew. Energy 1996, 9, 993–996. [Google Scholar] [CrossRef]
- Ciotola, R.J.; Lansing, S.; Martin, J.F. Emergy analysis of biogas production and electricity generation from small-scale agricultural digesters. Ecol. Eng. 2011, 37, 1681–1691. [Google Scholar] [CrossRef]
- Butterworth, B. Biofuels from waste: Closed-loop sustainable fuel production. Refocus 2006, 7, 60–61. [Google Scholar] [CrossRef]
- Kristoferson, L.A.; Bokalders, V. Renewable Energy Technologies—Their Application in Developing Countries; ITDG Publishing: London, UK, 1991. [Google Scholar]
- Batzias, F.; Sidiras, D.; Spyrou, E. Evaluating livestock manures for biogas production: A GIS based method. Renew. Energy 2005, 30, 1161–1176. [Google Scholar] [CrossRef]
- Tang, W.Z. Physicochemical Treatment of Hazardous Wastes; Lewis publisher: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wijesinghe, L.C.A.D.S.; Chandrasiri, J.A. Operating experience with biogas plants in Sri Lanka. Nat. Resour. Forum 1986, 10, 221–229. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Sweeney, S.; Feng, Y. Household biogas use in rural China: A study of opportunities and constraints. Renew. Sustain. Energy Rev. 2010, 14, 545–549. [Google Scholar] [CrossRef]
- Ni, J.Q.; Nyns, E.J. New concept for the evaluation of rural biogas management in developing countries. Energy Convers. Manag. 1996, 37, 1525–1534. [Google Scholar] [CrossRef]
- Limmeechokchai, B.; Chawana, S. Sustainable energy development strategies in the rural thailand: The case of the improved cooking stove and the small biogas digester. Renew. Sustain. Energy Rev. 2007, 11, 818–837. [Google Scholar] [CrossRef]
- Day, D.L.; Chen, T.H.; Anderson, J.C.; Steinberg, M.P. Biogas plants for small farms in Kenya. Biomass 1990, 21, 83–99. [Google Scholar] [CrossRef]
- Ru-Chen, C. The development of biogas utilization in China. Nat. Resour. Forum 1981, 5, 277–282. [Google Scholar] [CrossRef]
- Mukherjee, K.K. Gobar Gas Plant—A Study; Gandhi Peace Foundation: New Delhi, India, 1974. [Google Scholar]
- Three Cubic-Meter Bio-Gas Plant: A Construction Manual; Volunteers in Technical Assistance: Arlington, VA, USA, 1979.
- Hyman, E.L. Fuel substitution and efficient woodstoves-are they the answers to the fuelwood supply problem in northern nigeria. Environ. Manag. 1994, 18, 23–32. [Google Scholar] [CrossRef]
- Rubab, S.; Kandpal, T.C. Cost of anaerobic digestion technology: Household biogas plants in India. Int. J. Energy Res. 1995, 19, 675–685. [Google Scholar] [CrossRef]
- Bala, B.K.; Hossain, M.M. Economics of biogas digesters in bangladesh. Energy 1992, 17, 939–944. [Google Scholar] [CrossRef]
- Kandpal, T.C.; Joshi, B.; Sinha, C.S. Economics of family sized biogas plants in India. Energy Convers. Manag. 1991, 32, 101–113. [Google Scholar] [CrossRef]
- Pütz, K.; Asfaw, A.; Leta, B.; Müller, J. Biogas as Business-Biogas Transport Technology and Economic Concept for Developing Countries. In Proceedings of Conference on International Research on Food Security, Natural Resource Management and Rural Development, Bonn, Germany, 5–7 October, 2011.
- Peter, N.W.; Mugisha, J.; Drake, L. Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications. Energy Policy 2009, 37, 2754–2762. [Google Scholar] [CrossRef]
- Van Groenendaal, W.; Gehua, W. Microanalysis of the benefits of China’s family-size bio-digesters. Energy 2010, 35, 4457–4466. [Google Scholar] [CrossRef]
- Feng, T.; Cheng, S.; Min, Q.; Li, W. Productive use of bioenergy for rural household in ecological fragile area, panam county, tibet in China: The case of the residential biogas model. Renew. Sustain. Energy Rev. 2009, 13, 2070–2078. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Hsu, M.J. Biogas plants ease ecological stress in India’s remote villages. Hum. Ecol. 2008, 36, 435–441. [Google Scholar] [CrossRef]
- Sunderasan, S. Positive externalities of domestic biogas initiatives: Implications for financing. Renew. Sustain. Energy Rev. 2008, 12, 1476–1484. [Google Scholar] [CrossRef]
- Bilen, K.; Ozyurt, O.; Bakırcı, K.; Karslı, S.; Erdogan, S.; Yılmaz, M.; Comakl, O. Energy production, consumption, and environmental pollution for sustainable development: A case study in Turkey. Renew. Sustain. Energy Rev. 2008, 12, 1529–1561. [Google Scholar] [CrossRef]
- Pei-dong, Z.; Guomei, J.; Gang, W. Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China. Renew. Sustain. Energy Rev. 2007, 11, 1903–1912. [Google Scholar] [CrossRef]
- Yang, J.; Chen, W.; Chen, B. Impacts of biogas projects on agro-ecosystem in rural areas—A case study of gongcheng. Front. Earth Sci. 2011, 5, 1–6. [Google Scholar] [CrossRef]
- Cuéllar, A.D.; Webber, M.E. Cow power: The energy and emissions benefits of converting manure to biogas. Environ. Res. Lett. 2008, 3. [Google Scholar] [CrossRef]
- Dhingra, R.; Christensen, E.R.; Liu, Y.; Zhong, B.; Wu, C.-F.; Yost, M.G.; Remais, J.V. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China. Environ. Sci. Technol. 2011, 45, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, R.A. Household cooking fuel hydrogen sulfide and sulfur dioxide emissions from stalks, coal and biogas. Biomass 1989, 19, 233–245. [Google Scholar] [CrossRef]
- Khoiyangbam, R.S.; Kumar, S.; Jain, M.C.; Gupta, N.; Kumar, A.; Kumar, V. Methane emission from fixed dome biogas plants in hilly and plain regions of northern India. Bioresour. Technol. 2004, 95, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Pathak, H.; Jain, N.; Bhatia, A.; Mohanty, S.; Gupta, N. Global warming mitigation potential of biogas plants in India. Environ. Monit. Assess. 2009, 157, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Surindra, S. Potential of domestic biogas digester slurry in vermitechnology. Bioresour. Technol. 2010, 101, 5419–5425. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S. Bioremediation of agricultural wastes through vermicomposting. Biorem. J. 2009, 13, 21–28. [Google Scholar]
- Suthar, S. Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresour. Technol. 2007, 98, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, R.B.; Kumar, B.; Balachandra, P.; Ravindranath, N.H. Sustainable bioenergy production strategies for rural India. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 571–590. [Google Scholar] [CrossRef]
- Remais, J.; Chen, L.; Seto, E. Leveraging rural energy investment for parasitic disease control: Schistosome ova inactivation and energy co-benefits of anaerobic digesters in rural China. PLoS One 2009, 4, e4856. [Google Scholar] [CrossRef] [PubMed]
- Biogas Digest; Information and Advisory Service on Appropriate Technology, Deutsche Gesellschaft für Technische Zusammenarbeit: Eschborn, Germany, 1999.
- Kashyap, D.R.; Dadhich, K.S.; Sharma, S.K. Biomethanation under psychrophilic conditions: A review. Bioresour. Technol. 2003, 87, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Digester Comparison Study; The California Energy Commission and Commonwealth Energy Corporation: Santa Ana, CA, USA, 2003. [Google Scholar]
- Smith, J.U. The Potential of Small-Scale Biogas Digesters to Alleviate Poverty and Improve Long Term Sustainability of Ecosystem Services in Sub-Saharan Africa; University of Aberdeen, Institute of Biological and Environmental Science: Aberdeen, UK, 2012. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household Biogas Digesters—A Review. Energies 2012, 5, 2911-2942. https://doi.org/10.3390/en5082911
Rajendran K, Aslanzadeh S, Taherzadeh MJ. Household Biogas Digesters—A Review. Energies. 2012; 5(8):2911-2942. https://doi.org/10.3390/en5082911
Chicago/Turabian StyleRajendran, Karthik, Solmaz Aslanzadeh, and Mohammad J. Taherzadeh. 2012. "Household Biogas Digesters—A Review" Energies 5, no. 8: 2911-2942. https://doi.org/10.3390/en5082911
APA StyleRajendran, K., Aslanzadeh, S., & Taherzadeh, M. J. (2012). Household Biogas Digesters—A Review. Energies, 5(8), 2911-2942. https://doi.org/10.3390/en5082911