Experimental Study of a Triple Concentric Tube Heat Exchanger Integrated into a Wood-Based Air-Heating System for Energy-Efficient Dwellings
Abstract
:1. Introduction
2. Combined System Description
2.1. Mechanical Ventilation Heat Recovery (MVHR)
2.2. Room Sealed Wood Pellet Stove (RSWPS)
2.3. Triple Concentric Tube Heat Exchanger (TCTHE)
2.4. Coupling Configuration
3. Experimental Setup in Laboratory
3.1. Instrumentation
Quantity and type of sensors used | Accuracy and range of reliability after calibration | Fluid(s) measured | |
---|---|---|---|
12 thermocouples type T (copper-constantan) | ±0.06 °C | 0 to 100 °C | combustion air |
12 thermocouples type K (chromel-alumel) | ±0.20 °C | 0 to 250 °C | flue gases |
30 thermocouples type K (chromel-alumel) | ±0.06 °C | 0 to 100 °C | ventilation, ambient, external air |
1 vane wheel flow sensor (stainless steel) | ±0.10 m/s | 0 to 5 m/s | flue gases |
1 vane wheel flow sensor (aluminium) | ±0.10 m/s | 0 to 5 m/s | ventilation air in the TCTHE |
1 thermal flow sensor (thin-film element) | ±0.05 m/s | 0 to 2 m/s | combustion air |
2 thermal flow sensors (thin-film element) | ±0.10 m/s | 0 to 5 m/s | fresh air and exhaust air |
1 air velocity transducer (omnidirectional) | ± 0.10 m/s | 0 to 5 m/s | supply air in the living room |
3.2. Protocol
3.3. Results
3.3.1. Combustion Analysis
Parameters | Units | P1-V1 | P3-V3 | P5-V5 |
---|---|---|---|---|
TFG | °C | 205 | 270 | 320 |
TCA | °C | 50 | 60 | 70 |
CO2 | % | 5 | 8 | 11 |
CO | ppm | 125 | 50 | 100 |
qm pellet | kg/h | 0.8 | 1.5 | 2.1 |
ERSWPS | % | 79.7 | 81.9 | 83.4 |
PT pellet | W | 4400 | 8240 | 11540 |
PT RSWPS | W | 3505 | 6750 | 9625 |
PT FG | W | 805 | 1325 | 1685 |
3.3.2. Electrical Power
RSWPS operating mode | P1-V1 | P3-V3 | P5-V5 |
PE RSWPS (W) | 35 | 55 | 80 |
MVHR operating speed | Low | Normal | High |
PE MVHR (W) | 15 | 25 | 40 |
3.3.3. Heat Transferred and Effectiveness
EXP | MVHR | High | Normal | Low | ||||||
RSWPS | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | |
TCTHE-NI | ϕFG (W) | 325 | 511 | 692 | 320 | 496 | 658 | 294 | 474 | 619 |
ϕVA (W) | 361 | 560 | 745 | 349 | 539 | 706 | 320 | 515 | 655 | |
ϕCA (W) | 50 | 81 | 106 | 47 | 78 | 105 | 44 | 74 | 99 | |
ϕOUT (W) | 14 | 32 | 52 | 18 | 35 | 57 | 18 | 34 | 63 | |
zTCTHE-NI (-) | 0.28 | 0.32 | 0.37 | 0.43 | 0.51 | 0.56 | 0.60 | 0.69 | 0.79 | |
ETCTHE-NI (%) | 29.5 | 29.3 | 27.6 | 28.3 | 26.7 | 26.3 | 26.8 | 25.8 | 24.4 | |
MVHR | ϕFA (W) | 533 | 581 | 770 | 318 | 324 | 414 | 221 | 231 | 275 |
ϕEA (W) | 507 | 564 | 744 | 300 | 325 | 414 | 208 | 218 | 274 | |
zMVHR (-) | 0.79 | 0.81 | 0.82 | 0.94 | 0.94 | 0.96 | 0.99 | 0.93 | 0.94 | |
EMVHR (%) | 93.2 | 92.0 | 91.7 | 90.0 | 86.7 | 86.9 | 88.2 | 90.6 | 88.7 |
3.3.4. Temperatures
EXP | MVHR | High | Normal | Low | ||||||
RSWPS | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | |
TCTHE-NI | TFG in (°C) | 175.9 | 237.7 | 285.9 | 176.2 | 236.5 | 282.4 | 171.3 | 237.5 | 278.5 |
TFG out (°C) | 133.0 | 176.9 | 214.9 | 134.2 | 180.7 | 214.9 | 132.2 | 183.4 | 215.3 | |
TVA in (°C) | 25.6 | 27.6 | 29.2 | 26.1 | 27.0 | 28.9 | 24.6 | 27.3 | 27.1 | |
TVA out (°C) | 34.5 | 41.7 | 48.3 | 39.1 | 47.6 | 56.1 | 41.4 | 54.3 | 62.1 | |
TCA in (°C) | 47.5 | 60.5 | 70.0 | 48.9 | 60.8 | 71.7 | 47.4 | 62.4 | 70.9 | |
TCA out (°C) | 35.0 | 42.0 | 48.4 | 37.1 | 43.4 | 50.3 | 36.2 | 45.8 | 50.9 | |
TOUT (°C) | 29.6 | 32.9 | 34.9 | 30.2 | 31.5 | 34.4 | 28.3 | 32.5 | 32.9 | |
MVHR | TFA in (°C) | 15.9 | 17.1 | 15.6 | 17.2 | 17.8 | 17.5 | 15.9 | 18.4 | 16.5 |
TFA out (°C) | 25.6 | 27.5 | 29.1 | 25.9 | 26.8 | 28.6 | 24.4 | 27.0 | 26.7 | |
TEA in (°C) | 26.3 | 28.4 | 30.3 | 26.9 | 28.1 | 30.3 | 25.6 | 28.6 | 28.8 | |
TEA out (°C) | 19.0 | 20.3 | 19.6 | 19.2 | 19.7 | 19.6 | 17.7 | 19.8 | 17.9 |
3.3.5. Measurements Uncertainty
EXP | MVHR | High | Normal | Low | ||||||
RSWPS | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | |
TCTHE-NI | Δϕ/ϕFG (%) | 10.8 | 9.7 | 8.9 | 10.8 | 9.5 | 8.9 | 11.0 | 9.6 | 8.9 |
Δϕ/ϕVA (%) | 7.4 | 6.4 | 5.9 | 8.4 | 7.7 | 7.3 | 10.1 | 9.4 | 9.1 | |
Δϕ/ϕCA (%) | 7.7 | 6.7 | 6.3 | 7.8 | 6.7 | 6.3 | 7.9 | 6.8 | 6.3 | |
ΔE/E TCTHE-NI (%) | 26.9 | 23.3 | 21.3 | 27.0 | 23.8 | 22.3 | 28.6 | 25.3 | 24.0 | |
MVHR | Δϕ/ϕFA (%) | 6.1 | 5.9 | 5.4 | 6.9 | 6.8 | 6.2 | 7.5 | 7.4 | 6.9 |
Δϕ/ϕEA (%) | 6.8 | 6.4 | 5.7 | 7.1 | 6.8 | 6.2 | 7.5 | 7.3 | 6.8 | |
ΔE/E MVHR (%) | 12.5 | 12.1 | 10.9 | 13.8 | 13.6 | 12.4 | 14.9 | 14.7 | 13.7 |
3.3.6. Comparison with Numerical Results
COMP | MVHR | High | Normal | Low | ||||||
RSWPS | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | |
TCTHE-NI | ϕFG (W) | 329 | 503 | 687 | 317 | 500 | 652 | 295 | 480 | 624 |
ϕVA (W) | 359 | 549 | 746 | 342 | 538 | 701 | 314 | 511 | 662 | |
ϕCA (W) | 50 | 81 | 109 | 48 | 79 | 106 | 44 | 74 | 99 | |
ϕOUT (W) | 20 | 35 | 50 | 23 | 41 | 56 | 25 | 44 | 60 | |
ETCTHE-NI (%) | 29.3 | 28.7 | 27.7 | 27.7 | 26.6 | 26.2 | 26.4 | 25.5 | 24.7 |
COMP | MVHR | High | Normal | Low | ||||||
data | RSWPS | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 | P1-V1 | P3-V3 | P5-V5 |
TCTHE-NI | εr ϕ FG (%) | 1.3% | 1.6% | 0.6% | 0.7% | 0.7% | 1.0% | 0.4% | 1.1% | 0.7% |
εr ϕ VA (%) | 0.6% | 1.9% | 0.1% | 1.9% | 0.3% | 0.7% | 1.7% | 0.9% | 1.1% | |
εr ϕ CA (%) | 0.03% | 0.8% | 2.8% | 1.8% | 0.4% | 1.0% | 0.1% | 0.4% | 0.3% | |
εr E TCTHE-NI (%) | 0.6% | 1.9% | 0.1% | 1.9% | 0.3% | 0.7% | 1.7% | 0.9% | 1.1% |
3.3.7. RSWPS Efficiency Improvement
Parameters | Units | P1-V1 | P3-V3 | P5-V5 |
---|---|---|---|---|
ERSWPS | % | 79.7 | 81.9 | 83.4 |
PT pellet | W | 4400 | 8240 | 11540 |
PT RSWPS | W | 3505 | 6750 | 9625 |
PT FG | W | 805 | 1325 | 1685 |
ϕVA TCTHE-NI | W | 340 | 540 | 700 |
E’RSWPS | % | 87.4 | 88.5 | 89.5 |
4. Conclusions
Nomenclature
cp | specific heat capacity at constant pressure (J/(kg·K)) |
C | heat capacity rate (J/K) |
E | effectiveness or efficiency (%) |
E’ | improved effectiveness or efficiency (%) |
PE | electrical power (W) |
PT | thermal power (W) |
qm | mass flow rate (kg/s) |
S | section area (m2) |
T | temperature (K) |
v | velocity (m/s) |
z | heat capacity rate ratio (min/max) (-) |
Greek Symbols
εr | relative difference between computed and experimental results (%) |
ϕ | heat flow rate (W) |
ρ | density (kg/m3) |
ΔX | absolute uncertainty of parameter X (unity of X) |
ΔX/X | relative uncertainty of parameter X (%) |
Subscripts | |
---|---|
comp | computed |
exp | experimental |
in | inlet |
out | outlet |
max | maximum |
min | minimum |
pellet | pellet |
Acronyms
CA | combustion air |
EA | exhaust air |
FA | fresh air |
FG | flue gases |
OUT | outside |
TOT | total |
VA | ventilation air |
MVHR | mechanical ventilation heat recovery |
RSWPS | room-sealed wood pellet stove |
TCTHE | triple concentric tube heat exchanger |
TCTHE-NI | triple concentric tube heat exchanger with no insulation |
Acknowledgments
References
- International Energy Agency (IEA). Technology Roadmap—Energy Efficient Buildings: Heating and Cooling Equipment. Available online: http://www.iea.org/publications/freepublications/publication/buildings_roadmap-1.pdf (accessed on 1 October 2012).
- European Commission (EC). Action Plan for Energy Efficiency: Realising the Potential. Available online: http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexplus!prod!DocNumber&lg=en&type_doc=COMfinal&an_doc=2006&nu_doc=545 (accessed on 1 October 2012).
- Plateforme de Recherche et d’Expérimentation sur l’Énergie dans le Bâtiment (PREBAT). International Building and Energy Comparison—Final Report; PREBAT: Paris, France, 2007. [Google Scholar]
- Feist, W. Passive House: Learn the Basic Knowledge. Definition of Passive Houses. Heating with Nothing Other Than Fresh Air; Passivhaus Institut: Darmstadt, Germany, 2006. [Google Scholar]
- Fraefel, R.; Huber, H.; Trawnika, M. L’Aération dans les Bâtiments MINERGIE—Guide de Conception; Clima Suisse: Zürich, Switzerland, 2000. [Google Scholar]
- Dodoo, A.; Gustavsson, L.; Sathre, R. Primary energy implications of ventilation heat recovery in residential buildings. Energy Build. 2011, 43, 1566–1572. [Google Scholar] [CrossRef]
- European Commission (EC). Communication on the Biomass Action Plan; Office for Official Publications of the European Communities: Brussels, Belgium, 2005. [Google Scholar]
- European Commission (EC). Directive 2002/91/EC on the Energy Performance of Buildings; Office for Official Publications of the European Communities: Brussels, Belgium, 2003. [Google Scholar]
- European Commission (EC). Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance); Office for Official Publications of the European Communities: Brussels, Belgium, 2009. [Google Scholar]
- Steierer, F.; Fischer-Ankern, A. Wood Energy in Europe and North America: A New Estimate of Volumes and Flow. Joint Wood Energy Enquiry Report. 6 February 2007. Available online: http://staging.unece.org/fileadmin/DAM/timber/docs/stats-sessions/stats-29/english/report-conclusions-2007-03.pdf (accessed on 1 October 2012).
- Food and Agriculture Organization (FAO). Wood Energy for Europe: Status and Outlook. Available online: http://www.fao.org/docrep/meeting/018/k7431e.pdf (accessed on 1 October 2012).
- Feist, W.; Schnieders, J.; Dorer, V.; Haas, A. Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept. Energy Build. 2005, 37, 1186–1203. [Google Scholar] [CrossRef]
- Pfluger, R. Wood stoves in passive houses—Strategies for comfort. In Proceedings of the 12th International Conference on Passive House, Nuremberg, Germany, 11–12 April 2008.
- Persson, T.; Nordlander, S.; Rönnelid, M. Electrical savings by use of wood pellet stoves and solar heating systems in electrically heated single-family houses. Energy Build. 2005, 37, 920–929. [Google Scholar] [CrossRef]
- Hastings, S.R. Breaking the “heating barrier”: Learning from the first houses without conventional heating. Energy Build. 2004, 36, 373–380. [Google Scholar] [CrossRef]
- Lévesque, B.; Allaire, S.; Gauvin, D.; Koutrakis, P.; Gingras, S.; Rhainds, M.; Prud’Homme, H.; Duchesne, J.F. Wood-burning appliances and indoor air quality. Sci. Total Environ. 2001, 281, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Consumer Safety Commission. Recommendation on Hot Air Redistribution Systems. Available online: http://www.securiteconso.org/article230.html (accessed on 16 September 2012).
- Centre Scientifique et Technique du Bâtiment (CSTB). Avis Technique 14/08-1276 Palazzetti. Available online: http://www.cstb.fr/pdf/atec/GS14-O/AO081276.pdf (accessed on 5 October 2012).
- NF EN 613/A1-2003 Appareils de Chauffage Indépendants à Convection Utilisant les Combustibles Gazeux; Association Française de Normalisation (AFNOR): Saint-Denis, France, 2003.
- PrEN 16510-1 Residential Solid Fuel Burning Appliances—Part 1: General Requirements and Test Methods, Draft Standard from CEN/TC295/WG3. 2012.
- Journal Officiel de la République Française (JORF). Decree No. 2008-1231 of November 27, 2008 on the Prevention of Poisoning by Carbon Monoxide. Available online: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000019830531&dateTexte=&categorieLien=id (accessed on 9 October 2012).
- Journal Officiel de la République Française (JORF). Order of February 23, 2009 Taken for the Application of Articles R. 131-31 to R. 131-37 of the Code of Construction and Housing on the Prevention of Poisoning by Carbon Monoxide in the Premises for Residential Use. Available online: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000020314838&dateTexte=&categorieLien=id (accessed on 9 October 2012).
- Agence de l’Environnement et de la Maîtrise de l’Énergie (ADEME); Centre d’Essais et de Recherche des Industries de la Cheminée (CERIC); Laboratoire National d’Essais et de métrologie (LNE); Technova. Influence of Metallic Chimney Flue on the Performance of Residential Wood Burning Appliance. 2009. Available online: http://www.laboratoire-ceric.fr/pdf/Influence_conduit.pdf (accessed on 5 October 2012).
- Journal Officiel de la République Française (JORF). Arrêté du 24 Mars 1982, Modifié par L'arrêté du 28 Octobre 1983, Relatif à L'aération des Logements: Aération Générale ou Permanente, Aération Permanente Pouvant Être Limitée à Certaines Pièces. Available online: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000006074206&dateTexte=20100319 (accessed on 9 October 2012).
- Incropera, F.P.; de Witt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; Wiley: New York, NY, USA, 2006. [Google Scholar]
- NF EN 13384-1+A2 Août 2008 Conduits de Fumée—Méthodes de Calcul Thermo-Aéraulique—Partie 1: Conduits de Fumée ne Desservant qu'un Seul Appareil; Association Française de Normalisation (AFNOR): Saint-Denis, France, 2008.
- NF EN 14785 Août 2006 Appareils de Chauffage Domestique à Convection à Granulés de Bois—Exigences et Méthodes d’Essai; Association Française de Normalisation (AFNOR): Saint-Denis, France, 2006.
- Peigné, P. Étude d'un Système Combiné de Ventilation et de Chauffage au Bois dans les Bâtiments à Basse Consommation d'Énergie. Ph.D. Thesis, Université La Rochelle, La Rochelle, France, 2012. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Peigné, P.; Inard, C.; Druette, L. Experimental Study of a Triple Concentric Tube Heat Exchanger Integrated into a Wood-Based Air-Heating System for Energy-Efficient Dwellings. Energies 2013, 6, 184-203. https://doi.org/10.3390/en6010184
Peigné P, Inard C, Druette L. Experimental Study of a Triple Concentric Tube Heat Exchanger Integrated into a Wood-Based Air-Heating System for Energy-Efficient Dwellings. Energies. 2013; 6(1):184-203. https://doi.org/10.3390/en6010184
Chicago/Turabian StylePeigné, Pierre, Christian Inard, and Lionel Druette. 2013. "Experimental Study of a Triple Concentric Tube Heat Exchanger Integrated into a Wood-Based Air-Heating System for Energy-Efficient Dwellings" Energies 6, no. 1: 184-203. https://doi.org/10.3390/en6010184
APA StylePeigné, P., Inard, C., & Druette, L. (2013). Experimental Study of a Triple Concentric Tube Heat Exchanger Integrated into a Wood-Based Air-Heating System for Energy-Efficient Dwellings. Energies, 6(1), 184-203. https://doi.org/10.3390/en6010184