Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines
Abstract
:1. Introduction
2. Methods
2.1. Experimental Tractor and Apparatus
Component | Min. | Max. | Resolution |
---|---|---|---|
CO (%)vol | 0 | 10.00 | 0.001 |
CO2(%)vol | 0 | 18.00 | 0.01 |
Lambda | 0.5 | 22.00 | 0.001 |
NO (PPM) | 0 | 5000 | 1 |
2.2. Test Fuels and Procedure
Fuel property | Petroleum diesel (PD) | MCP-B100 [21] | MCP-B20 |
---|---|---|---|
Cetane Number | 49 | 52 | 49.6 |
Calorific Value (MJ/kg) | 46 | 40.04* | 44.8* |
Density at 15 °C (kg/L) | 0.83 | 0.867 | 0.8374 |
Viscosity at 40 °C (cp) | 2.525* | 2.8* | 4.22* |
Flash point (°C) | 79 | 124 | 88 |
Carbon residue % (m/m) | - | 0.2 | - |
Total contamination (mg/kg) | - | 2 | - |
Oxidation stability, 110 °C hours | - | 12 | - |
Acid value (mg KOH/g) | <0.1 | 0.3 | 0.14 |
Iodine value | - | 47 | - |
Sulfated ash content (%) | - | 0.01 | - |
Water content (mg/kg) | - | 80 | - |
Methanol content (%) | - | 0.04 | - |
Sulfuret content (mg/kg) | 8 | 2 | 6.8 |
Phosphorus content (mg/kg) | - | 3 | - |
Linolenic acid methyl ester (%) | - | 2 | - |
Monoglyceride content (%) | - | 0.2 | - |
Diglyceride content (%) | - | 0.04 | - |
Triglyceride content (%) | - | 0.02 | - |
Free glycerol (%) | - | 0.008 | - |
Total glycerol (%) | - | 0.02 | - |
3. Results and Discussion
3.1. Statistical Analysis
Variable | PD | MCP-B20 | ANOVA F | ||
---|---|---|---|---|---|
M | SD | M | SD | ||
Engine Torque (Nm) | 38.205 | 1.246 | 35.37 | 0.65 | 16.246*** |
PTO Torque (Nm) | 220.25 | 7.182 | 203.9 | 3.747 | 16.294*** |
Gross input power | 55.347 | 2.34 | 50.3 | 1.949 | 10.951** |
Engine Power (kW) | 10.395 | 0.337 | 9.627 | 0.178 | 16.206*** |
PTO Power (kW) | 12.232 | 0.399 | 11.327 | 0.209 | 16.129*** |
BSFC (kg/kWh) | 451.645 | 31.642 | 453.735 | 25.47 | 0.011 |
Engine efficiency (%) | 18.825 | 1.374 | 19.162 | 1.08 | 0.149 |
Noise level (db) | 90.9 | 0.408 | 90.375 | 0.33 | 3.997 |
Exhaust temperature (°C) | 356 | 4.082 | 350 | 4.32 | 4.075 |
CO2 (%) | 7.97 | 0.049 | 7.375 | 0.15 | 56.720*** |
CO (%) | 0.036 | 0.006 | 0.250 | 0.005 | 7.188*** |
O2 (%) | 9.58 | 0.258 | 10.53 | 0.294 | 23.543*** |
NO (PPM) | 541.5 | 20.68 | 493.5 | 22.22 | 10.003** |
Lambda | 1.835 | 0.034 | 2.016 | 0.0325 | 59.114*** |
Variable | PD | MCP-B20 | ANOVA F | ||
---|---|---|---|---|---|
M | SD | M | SD | ||
Engine Torque (Nm) | 79.1025 | 0.587 | 78.235 | 0.585 | 4.38 |
PTO Torque (Nm) | 456 | 3.366 | 451 | 3.35 | 4.412 |
Gross input power (kW) | 50.937 | 3.118 | 50.882 | 2.578 | 0.001 |
Engine Power (kW) | 12.42 | 0.092 | 12.28 | 0.09 | 4.292 |
PTO Power (kW) | 14.6 | 0.106 | 14.450 | 0.109 | 4.297 |
BSFC (kg/kWh) | 347.547 | 23.798 | 359.35 | 17.559 | 0.637 |
Engine efficiency (%) | 24.454 | 1.589 | 24.184 | 1.158 | 0.076 |
Noise level (db) | 86.3 | 0.622 | 85.9 | 0.648 | 0.793 |
Exhaust temperature (°C) | 470 | 5.77 | 480 | 5.788 | 5.985* |
CO2 (%) | 12.105 | 0.0914 | 12.025 | 0.881 | 1.587 |
CO (%) | 0.902 | 0.015 | 0.85 | 0.008 | 37.8*** |
O2 (%) | 2.98 | 0.077 | 3.102 | 0.074 | 5.254 |
NO (PPM) | 970 | 5.715 | 994 | 3.651 | 50.087*** |
Lambda | 1.13 | 0.008 | 1.14 | 0.016 | 1.2 |
3.2. Tractor Engine Performance
3.2.1. Tractor Engine Gross Input Power (kW) and Tractor Engine Brake Power (kW)
3.2.2. Tractor Engine Torque (Nm) and Engine Efficiency (%)
3.2.3. Brake Specific Fuel Consumption (BSFC)
3.2.4. Exhaust Temperature (°C) and Tractor Noise Level (db)
3.3. Tractor Engine Emissions
3.3.1. Carbon Monoxide (CO) and Carbon Dioxide (CO2)
3.3.2. Oxygen (O2) and Lambda (λ)
3.3.3. Nitrogen monoxide (NO)
4. Conclusions
Abbreviations
PD | Petroleum Diesel |
MCP | Microalgae Chlorella Protothecoides |
MCP-B20 | Microalgae Chlorella Protothecoides Biodiesel blend of 20% with 80% PD |
MCP-B100 | Microalgae Chlorella Protothecoides Biodiesel 100% |
MCP-O | Microalgae Chlorella Protothecoides oil |
PTO | Power Take Off |
ANOVA | Analysis Of Variance |
WOT | Wide Open Throttle |
HOT | Half Open Throttle |
db | Decibel |
FAMEs | Fatty Acid Methyl Esters |
BSFC | Brake Specific Fuel Consumption |
GIP | Gross Input Power |
UTHC | Unburnt Total Hydrocarbon |
PM | Particulate matte |
References
- Nabi, M.N.; Rahman, M.M.; Akhter, M.S. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Appl. Therm. Eng. 2009, 29, 2265–2270. [Google Scholar] [CrossRef]
- Dorado, M.; Ballesteros, E.; Arnal, J.M.; Gómez, J.; López Giménez, F.J. Testing waste olive oil methyl ester as a fuel in a diesel engine. Energy Fuels 2003, 17, 1560–1565. [Google Scholar] [CrossRef]
- Patil, P.D.; Deng, S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 2009, 88, 1302–1306. [Google Scholar] [CrossRef]
- Demirbas, A.; Fatih Demirbas, M. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Knothe, G.; Krahl, J.; van Gerpen, J. The Biodiesel Handbook; AOCS Press: Urbana, IL, USA, 2005. [Google Scholar]
- Wilson, R.J.; Farag, I.H. Parametric study of biodiesel quality and yield using a bench-top processor. Int. J. Oil Gas Coal Technol. 2012, 5, 92–105. [Google Scholar] [CrossRef]
- Allawzi, M.; Kandah, M.I. Parametric study of biodiesel production from used soybean oil. Eur. J. Lipid Sci. Technol. 2008, 110, 760–767. [Google Scholar] [CrossRef]
- Pereira, R.G.; Oliveira, C.D.; Oliveira, J.L.; Oliveira, P.C.P.; Fellows, C.E.; Piamba, O.E. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renew. Energy 2007, 32, 2453–2460. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Dasa, L.M.; Babu, M.K.G.; Arora, P.; Singh, V.P.; Kumar, N.R.; Varyani, T.S. Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine. Fuel 2009, 88, 1698–1707. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Widjaja, A.; Chien, C.-C.; Ju, Y.-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 2009, 40, 13–20. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain.Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Wang, G.-C.; Zhou, B.-C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 2008, 99, 4717–4722. [Google Scholar] [CrossRef] [PubMed]
- Haik, Y.; Selim, M.Y.E.; Abdulrehman, T. Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy 2011, 36, 1827–1835. [Google Scholar] [CrossRef]
- Matthew, K.H. Effects of No.2 diesel, B-20 soy biofuel blend, and B-100 soy biofuel on performance, efficiency, and emissions in a compression ignition tractor. In Proceedings of 2007 ASAE Annual Meeting, Chicago, IL, USA, 11–14 August 2007.
- Neel, C.; Johnson, D.; Wardlow, G. Performance, efficiency, and NOX emissions of a compact diesel tractor fueled with D2, B20, and B100 under steady-state loads. Appl. Eng. Agric. 2008, 24, 717–721. [Google Scholar] [CrossRef]
- Kulkarni, S.; Johnson, D.M.; Davis, J.A.; Kennon, D. Irrigation power unit performance, efficiency, and NOX emissions with petroleum diesel, biodiesel, and biodiesel blends. Appl. Eng. Agric. 2011, 27, 217–222. [Google Scholar] [CrossRef]
- Allwayzy, S.; Yusaf, T.; McCabe, B.; Pittaway, P.; Aravinthan, V. Microalgae as alternative fuel for compression ignition (CI) engines. In Proceedings of Southern Region Engineering Conference, Toowoomba, Australia, 11–12 November 2010.
- Soley Biotechnology Institute. Available online: http://algaeinstitute.com/ (accessed on 29 january 2013).
- Al-lwayzy, S.H.; Yusaf, T.; Jensen, T. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil. IOP Conf. Ser. Mater. Sci. Eng. 2012, 36, 012042:1–012042:10. [Google Scholar] [CrossRef]
- Raheman, H.; Phadatare, A.G. Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass Bioenergy 2004, 27, 393–397. [Google Scholar] [CrossRef]
- Xue, J.; Grift, T.E.; Hansen, A.C. Effect of biodiesel on engine performances and emissions. Renew. Sustain.Energy Rev. 2011, 15, 1098–1116. [Google Scholar] [CrossRef]
- Yusaf, T.; Yousif, B.; Elawad, M. Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches. Energy 2011, 36, 4871–4878. [Google Scholar] [CrossRef]
- Andersson, C. Observations on Electric Hybrid Bus Design; Lund Institute of Technology: Lund, Sweden, 2001. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-lwayzy, S.H.; Yusaf, T. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines. Energies 2013, 6, 766-783. https://doi.org/10.3390/en6020766
Al-lwayzy SH, Yusaf T. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines. Energies. 2013; 6(2):766-783. https://doi.org/10.3390/en6020766
Chicago/Turabian StyleAl-lwayzy, Saddam H., and Talal Yusaf. 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines" Energies 6, no. 2: 766-783. https://doi.org/10.3390/en6020766
APA StyleAl-lwayzy, S. H., & Yusaf, T. (2013). Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines. Energies, 6(2), 766-783. https://doi.org/10.3390/en6020766