Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters
Abstract
:1. Introduction
2. Measurement and Experimental Setup
Element | Characteristic | Value |
---|---|---|
Sensor layer | Printed circuit board (PCB) | Multilayer PCB with two-way segmentation |
Measuring segments | 112 (8 × 14) | |
Resistors | 1% tolerance, R = 150 mΩ | |
Long-term stability of the resistors | 0.5%/2000 h (70 °C) | |
Area per segment | ASeg = 1.74 cm2 (APCB = 194.88 cm2) | |
Area loss due to insulation | 2.8% (200 µm) | |
Current load per segment | 0–1.1 A | |
Power loss per measurement resistor | 119.6 mW@100 A (13.4 W for full PCB) | |
Contact resistance to the Bipolar Plate (BPP) | 3.34–6.25 mΩ per side(calculated) | |
Electronics | Microprocessor | ATmega |
Resolution | 15 bit | |
Interface | RS-232 or USB via adapter | |
Fuel cell current | 0–120 A | |
Deviation of the voltage measurement | <0.07% over the whole measuring range | |
Conversion time of one data block | <250 ms | |
Evaluation | Program | NI LabVIEW or MathWorks MATLAB |
Storage interval | from 0.5 s | |
Storage format | txt or csv |
Element | Characteristic | Value |
---|---|---|
Stack | Number of cells | nFC = 4 |
Active cell area | Acell ≈ 196 cm2 | |
Bipolar flow direction | coflow, internal manifold | |
Alignment of the bipolar plates | horizontal | |
Electronics | Fuel cell voltage | UFC = 2.64 V (single-cell voltage measurement) |
Rated current | IFC,rated = 100 A | |
Rated electrical power | PFC,el = 260 W@100 A (≈ 500 mA/cm2) | |
minimal single cell voltage | Ucell,min= 500 mV | |
Anode side | Operating mode | Active recirculation with purge valve |
Humidification | Self-humidification by recirculation | |
Anode inlet pressure | pAn,in ≈ 230 mbar@(2.78 Nl/min+recirculation) | |
Cathode side | Operating mode | Overflow |
Humidification | ϕ ≈ 0.9–1; Water-gas-membrane-humidifier | |
Cathode inlet pressure | pCa,in = 120 [email protected] Nl/min | |
Stoichiometry | λAn ≈ 2.5–3.0 | |
Air quality (particle size) | ≤5 µm | |
Cooling circuit | Operating temperature | TFC = 50–80 °C (outlet temperature of DI water) |
Conductivity of DI water | σH2O = ≤5 (µS/cm) |
3. Experimental Procedure
3.1. Measuring Process and Conditions
Measurement (MR#) | Title | Parameter variation | Measurement time | Value range |
---|---|---|---|---|
1 | Reference | - | 100 h | - |
2,3 | Recirculation | nReci | 11 h | 50%–100% |
4,5 | Purge interval | ΔtPurge | 11 h | 30–660 s |
6,7 | Stoichiometry | λair | 11 h | 2–4 |
8,9,10 | Temp. air inlet | Tair,in | 11 h | 59–65 °C |
11,12 | Stoichiometry | λair | 11 h | 2.2–2.5 |
13,14 | Cooling temperature | TFC | 11 h | 70 °C |
15,16 | Cooling temperature | TFC | 11 h | 65 °C |
17 | 100 h measurement | - | 100 h | - |
18 | Reverse flow | co-, counterflow | 1 h | - |
3.2. Preprocessing of the Current Density Measurement
4. Results of the Current Density Measurement
4.1. Anode
4.1.1. Recirculation
4.1.2. Purge Interval
4.2. Cathode
4.2.1. Stoichiometry
4.2.2. Air Inlet Temperature
4.3. Cooling
Temperature
4.4. Change of Flow at Anode and Cathode
Change of Flow
4.5. Long-Term Analysis
Operation (h) | Average cell voltage (mV) | Current density inlet (mA) | Current density outlet (mA) |
---|---|---|---|
t = 20 | 651.5 | 465.9 | 500.5 |
t = 400 | 644.1 | 413.9 | 550.6 |
Degradation | −19.5 µV/h | −137 µA/h | +132 µA/h |
Parameter | Symbol | Value “−” | Value “+” | Unit |
---|---|---|---|---|
Stack temperature TFC | A | 55 | 65 | (°C) |
Cathode stoichiometry | B | 2.9 | 3.3 | (-) |
Air inlet temperature | C | TFC-2 °C | TFC-4 °C | (°C) |
Recirculation pump speed | - | 60 | 60 | (%) |
Purge interval | - | 30 | 30 | (s) |
Number | A | B | C | AB | BC | AC | ABC |
---|---|---|---|---|---|---|---|
1 | - | - | - | + | + | + | - |
2 | + | - | - | - | + | - | + |
3 | - | + | - | - | - | + | + |
4 | + | + | - | + | - | - | - |
5 | - | - | + | + | - | - | + |
6 | + | - | + | - | - | + | - |
7 | - | + | + | - | + | - | - |
8 | + | + | + | + | + | + | + |
5. Conclusions
Conflict of Interest
References
- Weber, A.Z.; Newman, J. Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 2004, 104, 4679–4726. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Li, X. Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 2011, 37, 221–291. [Google Scholar] [CrossRef]
- Wang, C.-Y. Fundamental models for fuel cell engineering. Chem. Rev. 2004, 104, 4727–4765. [Google Scholar] [CrossRef] [PubMed]
- Hottinen, T.; Himanen, O.; Lund, P. Performance of planar free-breathing PEMFC at temperatures below freezing. J. Power Sources 2006, 154, 86–94. [Google Scholar] [CrossRef]
- Lobato, J.; Cañizares, P.; Rodrigo, M.A.; Pinar, F.J.; Úbeda, D. Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell. J. Power Sources 2011, 196, 4209–4217. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, H.; Colin Sun, J.; Zhang, J. AC impedance technique in PEM fuel cell diagnosis—A review. Int. J. Hydrog. Energy 2007, 32, 4365–4380. [Google Scholar] [CrossRef]
- Gerteisen, D.; Mérida, W.; Kurz, T.; Lupotto, P.; Schwager, M.; Hebling, C. Spatially resolved voltage, current and electrochemical impedance spectroscopy measurements. Fuel Cells 2011, 11, 339–349. [Google Scholar] [CrossRef]
- Markötter, H.; Manke, I.; Krüger, P.; Arlt, T.; Haussmann, J.; Klages, M.; Riesemeier, H.; Hartnig, C.; Scholta, J.; Banhart, J. Investigation of 3D water transport paths in gas diffusion layers by combined in-situ synchrotron X-ray radiography and tomography. Electrochem. Commun. 2011, 13, 1001–1004. [Google Scholar] [CrossRef]
- Klages, M.; Enz, S.; Markötter, H.; Manke, I.; Kardjilov, N.; Scholta, J. Investigations on dynamic water transport characteristics in flow field channels using neutron imaging techniques. J. Power Sources 2013, 239, 596–603. [Google Scholar] [CrossRef]
- Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z.A. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements. Energies 2010, 3, 770–783. [Google Scholar] [CrossRef]
- Heideck, G. Ein Autonomes Brennstoffzellensystem–Optimierungsansätze [in German]. Ph.D. Thesis, Otto-von-Guericke-Universität, Magdeburg, Magdeburg, Germany, 2006. [Google Scholar]
- Bernstein, P.; Heuer, M.; Heideck, G.; Styczynski, Z.A. Impact Study of Hydrogen Utilization in PEM Fuel Cell Systems. In Proceedings of the 4th World Hydrogen Technology Convention (WHTC2011), Glasgow, UK, 14–16 September 2011.
- Pei, P.; Yuan, X.; Chao, P.; Wang, X. Analysis on the PEM fuel cells after accelerated life experiment. Int. J. Hydrog. Energy 2010, 35, 3147–3151. [Google Scholar] [CrossRef]
- Schätzle, M.; Scholta, J.; Pawlik, J.; Jörissen, L. Influence of Start-Stop-Procedures on PEMFC Degradation. In Proceedings of the International Workshop on the Effects of Fuel & Air Quality to the Performance of Fuel Cells, Berlin, Germany, 9–11 September 2009.
- Siebertz, K. Statistische Versuchsplanung: Design of Experiments (DoE); Springer-Verlag: Berlin, Germany, 2010. [Google Scholar]
- Ryan, T.P. Modern Experimental Design; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Heuer, M.; Bernstein, P.A.; Wenske, M.; Styczynski, Z.A. Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters. Energies 2013, 6, 3841-3858. https://doi.org/10.3390/en6083841
Heuer M, Bernstein PA, Wenske M, Styczynski ZA. Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters. Energies. 2013; 6(8):3841-3858. https://doi.org/10.3390/en6083841
Chicago/Turabian StyleHeuer, Maik, Paul A. Bernstein, Michael Wenske, and Zbigniew A. Styczynski. 2013. "Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters" Energies 6, no. 8: 3841-3858. https://doi.org/10.3390/en6083841
APA StyleHeuer, M., Bernstein, P. A., Wenske, M., & Styczynski, Z. A. (2013). Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters. Energies, 6(8), 3841-3858. https://doi.org/10.3390/en6083841