Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES
Abstract
:1. Introduction
2. Background
2.1. Microgrid Modeling
2.2. Frequency Control Structure of Microgrid
3. Cooperative Frequency Control
3.1. Microgrid Central Control
3.1.1. Active Power Control
- Step 1:
- Firstly MGCC starts course 1 after the accident simultaneously; meanwhile MGCC monitors and collects the ROCOF and local information from all MGLCs;
- Step 2:
- Ranked second, the power deficiency of the accident is made up by the RKE of DFIGs and ESs during primary frequency control;
- Step 3:
- MGCC predicts the power deficiency ΔP according to Equation (6), and distributes the power deficiency to DGs and RPC of DFIG as well as loads in secondary frequency control;
- Step 4:
- The active power references calculated by MGCC is distributed to the DGs and controllable loads, then the power deficiency is balanced by the above control strategies, hence the power outputs of the ESs could be restored to secure the maximum emergency reserved power.
3.1.2. Reactive Power Control
3.2. Microgrid Local Control
3.2.1. DFIG-SMES Local Control
3.2.2. BES Local Control
Δf | SOC ≤ SOCmin | SOCmin < SOC ≤ SOCmax | SOC > SOCmax |
---|---|---|---|
Δf < Δfmin | 0 | 1 | 1 |
Δfmin ≤Δfsys < 0 | 0 | 0 | 1 |
Δf = 0 | 0 | 0 | 0 |
0 <Δf ≤ Δfmax | 0 | 0 | 1 |
Δf > Δfmax | 0 | 1 | 1 |
- ➢
- Discharge the battery when Δf < Δfmin and SOC > SOCmin;
- ➢
- Discharge the battery when SOC > SOCmax and Δf > 0;
- ➢
- ςSOC becomes to 0 when SOC ≤ SOCmin;
- ➢
- Idle the battery when |Δf| < 15 mHz and SOCmin < SOC ≤ SOCmax.
4. Simulation Results
4.1. Case A: Operation Mode Transfer
4.2. Case B: Fault in Islanded Mode
5. Conclusions
Acknowledgments
References
- Moslehi, K.; Kumar, R. A reliability perspective of smart grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Heydt, G.T. The next generation of power distribution systems. IEEE Trans. Smart Grid 2010, 1, 225–235. [Google Scholar] [CrossRef]
- Li, J.; Wei, W.; Xiang, J. A simple sizing algorithm for stand-alone PV/Wind/Battery hybrid microgrids. Energies 2012, 5, 5307–5323. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, L.; Yan, Y. Seamless transfer of single-phase grid interactive inverters between grid connected and stand-alone modes. IEEE Trans. Power Electron. 2010, 25, 1597–1603. [Google Scholar] [CrossRef]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef]
- Kim, H.M.; Kinoshita, T.; Shin, M.C. A multiagent system for autonomous operation of islanded microgrids based on a power market environment. Energies 2010, 3, 1972–1990. [Google Scholar] [CrossRef]
- Diaz, G.; Gonzalez-Moran, C.; Gomez-Aleixandre, J.; Diez, A. Complex-valued state matrices for simple representation of large autonomous microgrids supplied by PQ and Vf generation. IEEE Trans. Power Syst. 2009, 24, 1720–1730. [Google Scholar] [CrossRef]
- Vandoorn, T.L.; Renders, B.; Degroote, L. Active load control in islanded microgrids based on the grid voltage. IEEE Trans. Smart Grid 2011, 2, 139–151. [Google Scholar] [CrossRef]
- Oudalov, A.; Chartouni, D.; Ohler, C. Optimizing a battery energy storage system for primary frequency control. IEEE Trans. Power Sys. 2007, 22, 1259–1266. [Google Scholar] [CrossRef]
- Steurer, M.; Hribernik, W. Frequency response characteristics of a 100 MJ SMES coil measurements and model refinement. IEEE Trans. Appl. Supercond. 2005, 15, 1887–1890. [Google Scholar] [CrossRef]
- Tsutsui, H.; Nomura, S.; Shimada, R. Optimization of SMES coil by using virial theorem. IEEE Trans. Appl. Supercond. 2002, 12, 800–803. [Google Scholar] [CrossRef]
- Papadimitriou, C.N.; Vovos, N.A. Transient response improvement of microgrids exploiting the inertia of a Doubly-Fed Induction Generator (DFIG). Energies 2010, 3, 1049–1066. [Google Scholar] [CrossRef]
- Morren, J.; de Haan, S.W.H.; Kling, W.L.; Ferreira, J.A. Wind turbines emulating inertia and supporting primary frequency control. IEEE Trans. Power Sys. 2006, 21, 433–434. [Google Scholar] [CrossRef]
- Nomura, S.; Ohata, Y.; Hagita, T. Wind farms linked by SMES systems. IEEE Trans. Power Electron. 2005, 15, 1951–1954. [Google Scholar]
- Keung, P.K.; Li, P.; Banakar, H.; Ooi, B.T. Kinetic energy of wind turbine generators for system frequency support. IEEE Trans. Power Sys. 2009, 24, 279–287. [Google Scholar] [CrossRef]
- Sheikh, M.R.I.; Muyeen, S.M.; Takahashi, R.; Tamura, J. Alleviation of power fluctuation in interconnected power systems with wind farm by SMES with optimal coil size. IEEE Trans. Appl. Supercond. 2012, 22. [Google Scholar] [CrossRef]
- Zhou, F.; Joos, G.; Abbey, C.; Jiao, L.; Ooi, B.T. Use of large capacity smes to improve the power quality and stability of wind farms. IEEE PES Gen. Meet. 2004, 2, 2025–2030. [Google Scholar]
- Tsikalakis, A.; Hatzargyriou, N. Centralized control for optimizing microgrids operation. IEEE Trans. Energy Convers. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, M.R. Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans. Power Sys. 2008, 21, 1821–1831. [Google Scholar] [CrossRef]
- Mohamed, Y.A.I.; Radwan, A.A. Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems. IEEE Trans. Smart Grid 2011, 2, 352–362. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jeon, J.H.; Kim, S.K.; Cho, C.; Park, J.H.; Kim, H.M.; Nam, K.Y. Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation. IEEE Trans. Power Electron. 2010, 25, 3037–3048. [Google Scholar] [CrossRef]
- Kundur, P. Control of Active Power and Reactive Power. In Power System Stability and Control, 1st ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Lopes, J.A.P.; Moreira, C.L.; Madureira, A.G. Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 2006, 21, 916–924. [Google Scholar] [CrossRef]
- Molina, M.G.; Mercado, P.E. Power flow stabilization and control of microgrid with wind generation by superconducting magnetic energy storage. IEEE Trans. Power Electron. 2011, 26, 910–922. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, Y.; Cheng, M.; Fan, S. Unified control for a wind turbine-superconducting magnetic energy storage hybrid system based on current source converters. IEEE Trans. Magn. 2012, 48, 3973–3976. [Google Scholar] [CrossRef]
- Iglesias, I.J.; Bautista, A.; Visiers, M. Experimental and simulated result of a smes fed by a current source inverter. IEEE Trans. Appl. Supercond. 1997, 7, 861–864. [Google Scholar] [CrossRef]
- Rabbani, M.G.; Devotta, J.B.X.; Elangovan, S. Application of simultaneous active and reactive power modulation of smes unit under unequal mode for power system stabilization. IEEE Trans. Power Syst. 1999, 14, 547–552. [Google Scholar] [CrossRef]
- Divya, K.C.; Stergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Jongerden, M.R.; Haverkort, B.R. Which battery model to use. IET Softw. 2009, 3, 445–457. [Google Scholar] [CrossRef]
- Gu, W.; Liu, W.; Shen, C.; Wu, Z. Multi-stage underfrequency load shedding for islanded microgrid with equivalent inertia constant analysis. Int. J. Electr. Power Energy Syst. 2013, 46, 36–39. [Google Scholar] [CrossRef]
- Mokadem, M.E.; Courtecuisse, V.; Saudemont, C.; Robyns, B.; Deuse, J. Fuzzy logic supervisor-based primary frequency control experiments of a variable-speed wind generator. IEEE Trans. Power Syst. 2009, 24, 407–417. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Fadali, M.S. Nonlinear system identification using a Gabor/Hopfield network. IEEE Trans. Power Syst. 1996, 26, 124–134. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gu, W.; Liu, W.; Wu, Z.; Zhao, B.; Chen, W. Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES. Energies 2013, 6, 3951-3971. https://doi.org/10.3390/en6083951
Gu W, Liu W, Wu Z, Zhao B, Chen W. Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES. Energies. 2013; 6(8):3951-3971. https://doi.org/10.3390/en6083951
Chicago/Turabian StyleGu, Wei, Wei Liu, Zhi Wu, Bo Zhao, and Wu Chen. 2013. "Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES" Energies 6, no. 8: 3951-3971. https://doi.org/10.3390/en6083951
APA StyleGu, W., Liu, W., Wu, Z., Zhao, B., & Chen, W. (2013). Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES. Energies, 6(8), 3951-3971. https://doi.org/10.3390/en6083951