LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment
Abstract
:1. Introduction
2. Bioenergy Crops and Input Data
Site | Location Coordinates | Elevation (m a.s.l.) * | USDA Soil Description | Silt (%) | Clay (%) | Organic C (%) | pH | FAO Climate Description | Long-Term Rainfall Average (mm) |
---|---|---|---|---|---|---|---|---|---|
Ottava | 40° 46' N, 8° 29' E | 81 | Lithic Xerorthents | 12.9 | 17.9 | 1.22 | 8.3 | Thermomediterranean attenuated | 554 |
Ussana | 39° 24' N, 9° 05' E | 110 | Petrocalcic Palexeralf | 29.2 | 31.3 | 1.01 | 8.2 | Thermomediterranean accentuated | 432 |
3. LCA Methodology
3.1. Goal and Scope Definition
3.2. System Description
3.3. Environmental Impact Categories
3.4. Input Data and Assumptions
Field Operations | Machinery | Oilseed rape | Ethiopian mustard | Cardoon a | |||
---|---|---|---|---|---|---|---|
Time (h) | Fuel, Lubr. b (kg·ha−1) | Time (h) | Fuel, Lubr. b (kg·ha−1) | Time (h) | Fuel, Lubr. b (kg·ha−1) | ||
Ploughing | Tractor (3,970 kg) | 3.05 | Fuel = 37.6 | 3.05 | Fuel = 37.6 | 3.05 | Fuel = 37.6 |
Harrowing | Tractor (3,970 kg) | 1.00 | Fuel = 12.8 | 1.00 | Fuel = 12.8 | 1.00 | Fuel = 12.8 |
Sowing | Tractor (3,970 kg) Seeder (500 kg) | 1.05 | Fuel = 10.0 | 1.05 | Fuel = 10.0 | 1.00 | Fuel = 12.0 |
Rolling | Tractor (3,970 kg) | 0.50 | Fuel = 3.6 | 0.50 | Fuel = 3.6 | 0.50 | Fuel = 3.6 |
Fertilization | Tractor (2,620 kg) Spreader (100 kg) | 0.33 | Fuel = 4.4 | 0.33 | Fuel = 4.4 | 0.39 | Fuel = 5.0 |
Weeding | Tractor (3,970 kg) Sprayer (90 kg) | 0.45 | Fuel = 4.0 | 0.45 | Fuel=4.0 | 0.45 | Fuel = 4.0 |
Harvesting | Harvest (12,400 kg, for cardoon 13,500 kg) | 1.00 | Fuel = 12.0 | 1.30 | Fuel = 18.0 | 1.00 | Fuel = 36.8 |
Raking | Tractor (3,970 kg) | 0.55 | Fuel = 6.0 | 0.55 | Fuel=6.5 | 0.55 | Fuel = 7.0 |
Baling | Tractor (6,890 kg) Baler (12,560 kg) | 0.33 | Fuel = 7.0 Lubr. = 0.02 | 0.42 | Fuel = 9.0 | 0.50 | Fuel = 11.0 |
Emission Factors | Diesel Engine | Steam Power Plant |
---|---|---|
CO (g·kWh−1) | 1.3949 | 2.7692 |
NOX (g·kWh−1) | 0.6835 | 1.7723 |
CH4 (g·kWh−1) | 0.1116 | 0.0988 |
N2O (g·kWh−1) | 0.0465 | 0.0594 |
SO2 (g·kWh−1) | 0.0465 | 4.4308 |
NH3 (g·kWh−1) | 0.0093 | 0.0554 |
NMVOC (g·kWh−1) | 0.4650 | 0.0100 |
PM2.5 (g·kWh−1) | 0.0093 | 1.0135 |
HF (g·kWh−1) | – | 0.0554 |
HCl (g·kWh−1) | – | 0.2769 |
3.5. Land Use Change and Carbon Stock
4. Results and Discussion
4.1. Oleaginous Crop Cultivation
Cumulative Energy Demand (MJ·ha−1) | ||||||
Bioenergy chains | Tillage | Sowing | Fertilization | Weeding | Harvesting | Total |
Oilseed rape | 3,717.2 | 1,005.8 | 9,347.3 | 396.2 | 2,799.4 | 17,266.0 |
Ethiopian mustard | 3,717.2 | 1,083.8 | 10,010.1 | 396.2 | 3,629.6 | 18,837.9 |
Cardoon | 744.5 | 316.3 | 11,372.1 | 189.9 | 4,702.7 | 17,325.6 |
Global Warming Potential 100y (kg CO2eq·ha−1) | ||||||
Bioenergy chains | Tillage | Sowing | Fertilization | Weeding | Harvesting | Total |
Oilseed rape | 238.8 | 57.9 | 1508.7 | 22.4 | 163.8 | 1,991.6 |
Ethiopian mustard | 238.8 | 61.4 | 1626.3 | 22.4 | 214.0 | 2,162.9 |
Cardoon | 47.8 | 17.2 | 1725.7 | 9.9 | 289.0 | 2,089.7 |
Acidification Potential (kg SO2eq·ha−1) | ||||||
Bioenergy chains | Tillage | Sowing | Fertilization | Weeding | Harvesting | Total |
Oilseed rape | 1.54 | 0.45 | 26.77 | 0.34 | 1.01 | 30.12 |
Ethiopian mustard | 1.54 | 0.49 | 29.63 | 0.34 | 1.34 | 33.34 |
Cardoon | 0.31 | 0.15 | 35.34 | 0.08 | 1.98 | 37.85 |
Cultivation Phases | Oilseed rape | Ethiopian mustard | Cardoon | |
---|---|---|---|---|
Seed production (t·ha−1) | 1.80 | 1.90 | 0.75 | |
Straw production (t·ha−1) | 6.15 | 8.10 | 10.00 | |
Seed energy (GJ·ha−1) | 45.00 | 47.50 | 16.88 | |
Straw energy (GJ·ha−1) | 92.25 | 121.50 | 130.00 | |
LCA Impacts | Oilseed rape | Ethiopian mustard | Cardoon | |
CED | MJ·ha−1 | 17,266.0 | 18,836.8 | 17,325.6 |
MJ·tSEED−1 | 9,592.2 | 9,914.1 | 23,100.8 | |
MJ·GJPROD−1 | 125.80 | 111.46 | 117.96 | |
GWP-100y | kg·CO2·ha−1 | 1,991.6 | 2,162.9 | 2,089.7 |
kg·CO2·tSEED−1 | 1,106.4 | 1,138.3 | 2,786.2 | |
kg·CO2·GJPROD−1 | 14.51 | 12.80 | 14.23 | |
AP | kg·SO2·ha−1 | 30.1 | 33.3 | 37.9 |
kg·SO2·tSEED−1 | 16.7 | 17.5 | 50.5 | |
kg·SO2·GJPROD−1 | 0.22 | 0.20 | 0.26 |
4.2. Transportation of Agricultural Products
LCA Impacts | Unit | Oilseed rape | Ethiopian mustard | Cardoon | |
---|---|---|---|---|---|
CED | Oilseed | MJ·ha−1 | 203.5 | 214.8 | 84.8 |
MJ·tSEED−1 | 113.1 | 113.1 | 113.1 | ||
MJ·GJPROD−1 | 1.48 | 1.27 | 0.58 | ||
Straw | MJ·ha−1 | 1004.5 | 1323.1 | 1633.4 | |
MJ·tSEED−1 | 558.06 | 696.37 | 2177.87 | ||
MJ·GJPROD−1 | 7.3 | 7.8 | 11.1 | ||
GWP-100y | Oilseed | kg·CO2·ha−1 | 12.0 | 12.7 | 5.0 |
kg·CO2·tSEED−1 | 6.7 | 6.7 | 6.7 | ||
kg·CO2·GJPROD−1 | 0.09 | 0.08 | 0.03 | ||
Straw | kg·CO2·ha−1 | 59.7 | 78.6 | 97.0 | |
kg·CO2·tSEED−1 | 33.2 | 41.4 | 129.3 | ||
kg·CO2·GJPROD−1 | 0.44 | 0.47 | 0.66 | ||
AP | Oilseed | kg·SO2·ha−1 | 0.07 | 0.07 | 0.03 |
kg·SO2·tSEED−1 | 0.039 | 0.038 | 0.040 | ||
kg·SO2·GJPROD−1 | 0.0005 | 0.0004 | 0.0002 | ||
Straw | kg·SO2·ha−1 | 0.33 | 0.43 | 0.53 | |
kg·SO2·tSEED−1 | 0.183 | 0.226 | 0.707 | ||
kg·SO2·GJPROD−1 | 0.0024 | 0.0025 | 0.0036 |
4.3. Vegetable Oil Extraction Process
Oil extraction Process | Oilseed rape | Ethiopian mustard | Cardoon | |
---|---|---|---|---|
Vegetable oil (kg·ha−1) | 612 | 608 | 180 | |
Vegetable oil (GJ·ha−1) | 23.01 | 22.86 | 6.77 | |
Oil press cake (kg·ha−1) | 1152 | 1254 | 555 | |
Oil press cake (GJ·ha−1) | 21.43 | 23.32 | 9.82 | |
LCA Impacts | Oilseed rape | Ethiopian mustard | Cardoon | |
CED | MJ·tOIL−1 | 987.79 | 1045.96 | 1375.28 |
MJ·ha−1 | 604.53 | 635.95 | 247.55 | |
GWP | kg·CO2·tOIL−1 | 15.93 | 16.70 | 21.04 |
kg·CO2·ha−1 | 9.75 | 10.15 | 3.79 | |
AP | kg·SO2·tOIL−1 | 0.08 | 0.09 | 0.11 |
kg·SO2·ha−1 | 0.05 | 0.05 | 0.02 |
4.4. PVO Diesel Generator
Energy Production | Oilseed rape | Ethiopian mustard | Cardoon | |
---|---|---|---|---|
Vegetable oil (kg·ha−1) | 612 | 608 | 180 | |
Electrical energy (kWh·ha−1) | 2,812.48 | 2,794.10 | 827.20 | |
LCA Impacts | Oilseed rape | Ethiopian mustard | Cardoon | |
CED (MJ·ha−1) | Direct | 2,150.35 | 2,136.30 | 632.46 |
Avoided | −26,765.30 | −26,590.39 | −7,872.15 | |
GWP (kg CO2·ha−1) | Direct | 163.48 | 162.41 | 48.08 |
Avoided | −1,778.55 | −1,766.93 | −523.10 | |
AP (kg SO2·ha−1) | Direct | 1.70 | 1.69 | 0.50 |
Avoided | −8.33 | −8.28 | −2.45 |
4.5. Steam Power Plant
Energy Production | Oilseed rape | Ethiopian mustard | Cardoon | |
---|---|---|---|---|
Straw (kg·ha−1) | 6,150 | 8,100 | 10,000 | |
Electrical energy (kWh·ha−1) | 6,406.25 | 8,437.50 | 9,027.78 | |
LCA Impacts | Oilseed rape | Ethiopian mustard | Cardoon | |
CED (MJ·ha−1) | Direct | 5,683.75 | 7,485.92 | 9,140.72 |
Avoided | −60,965.85 | −80,296.48 | −85,913.95 | |
GWP (kg CO2·ha−1) | Direct | 425.81 | 560.82 | 685.40 |
Avoided | −4,051.18 | −5,335.70 | −5,708.98 | |
AP (kg SO2·ha−1) | Direct | 34.95 | 46.03 | 56.80 |
Avoided | −18.97 | −24.99 | −26.74 |
4.6. Comparison of the Three Bioenergy Systems
Phases | CED (MJ·ha−1) | GWP (kg CO2·ha−1) | AP (kg SO2·ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Oilseed rape | Ethiopian mustard | Cardoon | Oilseed rape | Ethiopian mustard | Cardoon | Oilseed rape | Ethiopian mustard | Cardoon | |
Cultivation | 8,943.8 | 9,324.2 | 7,068.8 | 1,031.6 | 1,070.6 | 852.6 | 15.60 | 16.51 | 20.59 |
Seed transportation | 105.4 | 106.3 | 34.6 | 6.2 | 6.3 | 2.0 | 0.03 | 0.03 | 0.01 |
Straw transportation | 1,004.5 | 1,323.1 | 1,633.4 | 59.7 | 78.6 | 97.0 | 0.33 | 0.43 | 0.53 |
Oil extraction | 313.1 | 314.8 | 101.0 | 5.0 | 5.0 | 1.5 | 0.03 | 0.03 | 0.01 |
Diesel generator | 2,150.4 | 2,136.3 | 632.5 | 163.5 | 162.4 | 48.1 | 1.70 | 1.69 | 0.50 |
Steam power plant | 5,683.8 | 7,485.9 | 9,140.7 | 425.8 | 560.8 | 685.4 | 34.95 | 46.03 | 56.80 |
LCA Impacts | Oilseed rape | Ethiopian mustard | Cardoon | Oilseed rape | Ethiopian mustard | Cardoon | Oilseed rape | Ethiopian mustard | Cardoon |
Direct impact (a) | 18,201.0 | 20,690.6 | 18,611.0 | 1,691.9 | 1,883.7 | 1,686.7 | 52.64 | 64.71 | 78.44 |
Avoided impact by Diesel generator | 26,765.3 | 26,590.4 | 7,872.1 | 1,778.6 | 1,766.9 | 523.1 | 8.33 | 8.28 | 2.45 |
Avoided impact by steam power plant | 60,965.8 | 80,296.5 | 85,914.0 | 4,051.2 | 5,335.7 | 5,709.0 | 18.97 | 24.99 | 26.74 |
Avoided impact (b) | 87,731.2 | 106,886.9 | 93,786.1 | 5,829.7 | 7,102.6 | 6,232.1 | 27.31 | 33.27 | 29.19 |
Saved impact (b − a) | 69,530.2 | 86,196.2 | 75,175.1 | 4,137.9 | 5,218.9 | 4,545.4 | −25.33 | −31.45 | −49.25 |
GWP-100y (kg CO2·ha−1) | Bioenergy Chains | ||
---|---|---|---|
Oilseed rape | Ethiopian mustard | Cardoon | |
Direct impact (a) | 1692 | 1884 | 1687 |
SOC change (b) | 330 | 352 | 125 |
Overall impact (c = a + b) | 2022 | 2236 | 1811 |
Avoided impact (d) | 5830 | 7103 | 6232 |
Saved impact (d − c) | 3808 | 4867 | 4421 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Promotion of the Use of Energy from Renewable Sources; Directive 2009/28/EC; European Commission: Brussels, Belgium, 2009.
- Koçar, G.; Civaş, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Hossain, A.K.; Davies, P.A. Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renew. Energy 2010, 35, 1–13. [Google Scholar] [CrossRef]
- Russo, D.; Dassisti, M.; Lawlor, V.; Olabi, A.G. State of the art of biofuels from pure plant oil. Renew. Sustain. Energy Rev. 2012, 16, 4056–4070. [Google Scholar] [CrossRef] [Green Version]
- Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.O.; Madzimbamuto, T.F.; Ikhu-Omoregbe, D.I.O. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 2014, 61, 276–297. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Imtenan, S.; Shahir, S.A.; Mobarak, H.M. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Convers. Manag. 2014, 80, 202–228. [Google Scholar] [CrossRef]
- Malça, J.; Coelho, A.; Freire, F. Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations. Appl. Energy 2014, 114, 837–844. [Google Scholar] [CrossRef]
- San Josè Alonso, J.F.; Lopez Sastre, J.A.; Romero-Avila, C.; Lopez Romero-Avila, E.; Izquierdo Iglesias, C. Using mixtures of diesel and sunflower oil as fuel for heating purposes in Castilla y Leon. Energy 2005, 30, 573–582. [Google Scholar] [CrossRef]
- Altin, R.; Cetinkaya, S.; Yucesu, H.S. The potential of using vegetable oil fuels as fuel for diesel engines. Energy Convers. Manag. 2001, 42, 529–538. [Google Scholar] [CrossRef]
- De Almedia, S.C.A.; Belchior, C.R.; Nascimento, M.V.G.; Vieira, L.S.R.; Fleury, G. Performance of a diesel generator fuelled with palm oil. Fuel 2002, 81, 2097–2102. [Google Scholar] [CrossRef]
- Sidibé, S.S.; Blin, J.; Vaitilingom, G.; Azoumah, Y. Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review. Renew. Sustain. Energy Rev. 2010, 14, 2748–2759. [Google Scholar] [CrossRef]
- Misra, R.D.; Murthy, M.S. Straight vegetable oils usage in a compression ignition engine—A review. Renew. Sustain. Energy Rev. 2010, 14, 3005–3013. [Google Scholar] [CrossRef]
- Soo-Young, N. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renew. Sustain. Energy Rev. 2011, 15, 131–149. [Google Scholar] [CrossRef]
- Wartsila, Liquid Biofuel Power Plants. Available online: http://www.wartsila.com (accessed on 5 April 2014).
- Katerji, N.; Mastrorilli, M.; Rana, G. Analysis and improvement of water use efficiency for crops cultivated in the Mediterranean regions: The state of the art. Available online: http://om.ciheam.org/om/pdf/a72/00800724.pdf (accessed on 2 May 2014).
- Turner, N.C. Sustainable production of crops and pastures under drought in a Mediterranean environment. Ann. Appl. Biol. 2004, 144, 139–147. [Google Scholar] [CrossRef]
- Knoll, J.E.; Anderson, W.F.; Strickland, T.C.; Hubbard, R.K.; Malik, R. Low-input production of biomass from perennial grasses in the Coastal Plain of Georgia, USA. Bioenergy Resour. 2012, 5, 206–214. [Google Scholar] [CrossRef]
- Lazzeri, L.; D’Avino, L.; Mazzoncini, M.; Antichi, D.; Mosca, G.; Zanetti, F.; del Gatto, A.; Pieri, S.; de Mastro, G.; Grassano, N.; et al. On farm agronomic and first environmental evaluation of oil crops for sustainable bioenergy chains. Italian J. Agron. 2010, 4, 171–180. [Google Scholar]
- Ledda, L.; Deligios, P.A.; Farci, R.; Sulas, L. Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crops Prod. 2013, 7, 218–226. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Oenema, O.; Kuikman, P.J.; Bakker, R.R.; van Groenigen, J.W. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. GCB Bioenergy 2010, 2, 201–213. [Google Scholar]
- Gasol, C.M.; Gabarrell, X.; Anton, A.; Rigola, M.; Carrasco, J.; Ciria, P.; Solano, M.L.; Rieradevall, J. Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass Bioenergy 2007, 31, 543–555. [Google Scholar] [CrossRef]
- Cocco, D. Life cycle assessment of bioenergy production systems from oilseed rape crops. J. Power Energy 2011, 225, 63–73. [Google Scholar] [CrossRef]
- Weiser, C.; Zeller, V.; Reinicke, F.; Wagner, B.; Majer, S.; Vetter, A.; Thraen, D. Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany. Appl. Energy 2014, 114, 749–762. [Google Scholar] [CrossRef]
- Whittaker, C.; Borrion, A.L.; Newnes, L.; McManus, M. The renewable energy directive and cereal residues. Appl. Energy 2014, 122, 207–215. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Energy crops and their implications on soil and environment. Agron. J. 2010, 102, 403–419. [Google Scholar] [CrossRef]
- Environmental Management—Life Cycle Assessment—Principles and Framework; EN ISO 14040; International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Environmental Management—Life Cycle Assessment—Requirements and Guidelines; EN ISO 14044; International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Fazio, S.; Monti, A. Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass Bioenergy 2011, 35, 4868–4878. [Google Scholar] [CrossRef]
- Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes. Environ. Sci. Technol. 2012, 46, 13521–13530. [Google Scholar] [CrossRef] [PubMed]
- Hamelin, L.; Jørgensen, U.; Petersen, B.M.; Olesen, J.E.; Wenzel, H. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark: A consequential life cycle inventory. GCB Bioenergy 2012, 4, 889–907. [Google Scholar] [CrossRef]
- Curran, M.A.; Mann, M.; Norris, G. The international workshop on electricity data for life cycle inventories. J. Clean. Prod. 2005, 13, 853–862. [Google Scholar] [CrossRef]
- Roggero, P.P.; Bagella, S.; Deligios, P.; Ledda, L.; Gutierrez, M. Gestione dell’abbandono dei seminativi italiani in aree svantaggiate. In Proceedings of the Giornata di studio: Situazione dei seminativi nel quadro dell’agricoltura italiana, Firenze, Italy, 18 November 2010; pp. 147–173. (In Italian)
- Niedertscheider, M.; Erb, K. Land system change in Italy from 1884 to 2007: Analysing the North–South divergence on the basis of an integrated indicator framework. Land Use Policy 2014, 39, 366–375. [Google Scholar] [CrossRef]
- Baldock, D.; Beaufoy, G.; Brouwer, F.; Godeschalk, F. Farming at the Margins: Abandonment of Redeployment of Agricultural Land in Europe; Institute for European Environmental Policy (IEEP)/Agricultural Economics Research Institute (LEI-DLO): London, UK; The Hague, The Netherlands, 1996. [Google Scholar]
- Krasuska, E.; Cadorniga, C.; Tenorio, J.L.; Testa, G.; Scordia, D. Potential land availability for energy crops production in Europe. Biofuels Bioprod. Biorefin. 2010, 4, 658–673. [Google Scholar] [CrossRef]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thran, D.; van Groenigen, K.J.; Weih, M.; et al. Bioenergy from “surplus” land: Environmental and socio-economic implications. BioRisk 2012, 7, 5–50. [Google Scholar] [CrossRef]
- Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evolut. 2008, 2, 65–72. [Google Scholar] [CrossRef]
- Cotula, L.; Dyer, N.; Vermeulen, S. Fuelling Exclusion? The Biofuels Boom and Poor People’s Access to Land; International Institute for Environment and Development (IEED): London, UK, 2008. [Google Scholar]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 2008, 42, 5791–5794. [Google Scholar] [CrossRef] [PubMed]
- Towards Sustainable Production and Use of Resource: Assessing Biofuels; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2009.
- Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity. Biofuels and Sustainability Reports. Available online: http://www.esa.org/biofuelsreports/ (accessed on 16 April 2014).
- Zhuang, D.F.; Jiang, D.; Liu, L.; Huang, Y.H. Assessment of bioenergy potential on marginal land in China. Renew. Sustain. Energy Rev. 2011, 15, 1050–1056. [Google Scholar] [CrossRef]
- Chiti, T.; Gardin, L.; Perugini, L.; Quaratino, R.; Vaccari, F.P.; Miglietta, F.; Valentini, R. Soil organic carbon stock assessment for the different cropland land uses in Italy. Biol. Fertil. Soils 2012, 48, 9–17. [Google Scholar] [CrossRef]
- Francaviglia, R.; Benedetti, A.; Doro, L.; Madrau, S.; Ledda, L. Influence of land use on soil quality and stratification ratios under agro-silvo-pastoral Mediterranean management systems. Agric. Ecosyst. Environ. 2014, 183, 86–92. [Google Scholar] [CrossRef]
- Cowie, A.L.; Smith, P.; Johnson, D. Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitig. Adapt. Strateg. Glob. Change 2006, 11, 979–1002. [Google Scholar] [CrossRef]
- Van-Camp, L.; Bujarrabal, B.; Gentile, A.-R.; Jones, R.J.A.; Montanarella, L.; Olazabal, C.; Selvaradjou, S.K. Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection; EUR 21319 EN/1; Office for Official Publications of the European Communities: Luxembourg City, Luxembourg, 2004. [Google Scholar]
- Brandão, M.; Milà i Canals, L.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 2011, 35, 2323–2336. [Google Scholar] [CrossRef]
- Brandão, M.; Milà i Canals, L. Global characterisation factors to assess land use impacts on biotic production. Int. J. Life Cycle Assess. 2013, 18, 1243–1252. [Google Scholar] [CrossRef]
- Muench, S.; Guenther, E. A systematic review of bioenergy life cycle assessments. Appl. Energy 2013, 112, 257–273. [Google Scholar] [CrossRef]
- Börjesson, P.; Tufvesson, L.M. Agricultural crop-based biofuels—Resource efficiency and environmental performance including direct land use changes. J. Clean. Prod. 2011, 19, 108–120. [Google Scholar] [CrossRef]
- SimaPro LCA Software, Version 7.3. Available online: http://www.simapro.co.uk/index.html (accessed on 25 September 2014).
- SimaPro Database Manual. Methods Library. Available online: http://www.simapro.co.uk/index.html (accessed on 25 September 2014).
- Iriarte, A.; Rieradevall, J.; Gabarrell, X. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J. Clean. Prod. 2010, 18, 336–345. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Gulczyński, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- Biomass Combustion and Co-Firing: An Overview. Available online: http://www.ieabcc.nl/publications/t32.pdf (accessed on 3 April 2014).
- Kabir, M.R.; Kumar, A. Comparison of the energy and environmental performances of nine biomass/coal co-firing pathways. Bioresour. Technol. 2012, 124, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- Fernando, A.L.; Duarte, M.P.; Almeida, J.; Boléo, S.; Mendes, B. Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod. Biorefin. 2010, 4, 594–604. [Google Scholar] [CrossRef]
- IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006.
- Archontoulis, S.V.; Struik, P.C.; Yin, X.; Bastiaans, L.; Vos, J.; Danalatos, N.G. Inflorescence characteristics, seed composition, and allometric relationships predicting seed yields in the biomass crop Cynara cardunculus. GCB Bioenergy 2010, 2, 113–129. [Google Scholar]
- Gominho, J.; Lourenco, A.; Palma, P.; Lourenco, M.E.; Curt, M.D.; Fernández, J.; Pereira, H. Large scale cultivation of Cynara cardunculus L. for biomass production—A case study. Ind. Crops Prod. 2011, 33, 1–6. [Google Scholar] [CrossRef]
- Buţurcă, R.-C.; Gasol, C.M.; Gabarrell, X.; Scarpete, D. Comparative Life Cycle Assessment of rapeseed oil and biodiesel from winter rape produced in Romania. Int. J. Environ. Ecol. Geol. Min. Eng. 2013, 7, 547–552. [Google Scholar]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crops Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Abeliotis, K.; Makrinika, K.; Detsis, V.; Lasaridi, K. Life cycle assessment of Cynara cardunculus L. oilseeds production. In Proceedings of the 11th International Conference on Environment Science and Technology, Chania, Crete, Greece, 3–5 September 2009; pp. A1–A6.
- Börjesson, P. Environmental effects of energy crop cultivation in Sweden—I: Identification and quantification. Biomass Bioenergy 1999, 16, 137–154. [Google Scholar] [CrossRef]
- Zan, C.S.; Fyles, J.W.; Girouard, P.; Samson, R.A. Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric. Ecosyst. Environ. 2001, 86, 135–144. [Google Scholar] [CrossRef]
- Deligios, P.A.; Farci, R.; Ledda, L. Annual and perennial crops for bioenergy: Soil and environmental issues. In Advances in fertilizer technology I: Synthesis; Sinha, S., Pant, K.K., Eds.; Studium Press LLC: Houston, TX, USA, 2014; pp. 635–658. [Google Scholar]
- Hillier, J.; Whittaker, C.; Dailey, G.; Aylott, M.; Casella, E.; Richter, G.M.; Riche, A.; Murphy, R.; Taylor, G.; Smith, P. Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses. GCB Bioenergy 2009, 1, 267–281. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocco, D.; Deligios, P.A.; Ledda, L.; Sulas, L.; Virdis, A.; Carboni, G. LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment. Energies 2014, 7, 6258-6281. https://doi.org/10.3390/en7106258
Cocco D, Deligios PA, Ledda L, Sulas L, Virdis A, Carboni G. LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment. Energies. 2014; 7(10):6258-6281. https://doi.org/10.3390/en7106258
Chicago/Turabian StyleCocco, Daniele, Paola A. Deligios, Luigi Ledda, Leonardo Sulas, Adriana Virdis, and Gianluca Carboni. 2014. "LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment" Energies 7, no. 10: 6258-6281. https://doi.org/10.3390/en7106258
APA StyleCocco, D., Deligios, P. A., Ledda, L., Sulas, L., Virdis, A., & Carboni, G. (2014). LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment. Energies, 7(10), 6258-6281. https://doi.org/10.3390/en7106258