Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades
Abstract
:1. Introduction
2. The Optimization Method of Continuous-Curvature Blade Profile
2.1. The Optimization of Leading Edge
2.2. The Optimization of the Main Part of Blade Surface
- (1)
- The control points Qi (si, Ki) of the cubic B-spline curve for curvature distribution are defined.
- (2)
- The coordinates (x0, y0) and slope k0 at the starting point of the main surface, i.e., at the blend point, are defined according to the datum blade, and the slope angle φ0 is calculated.
- (3)
- The streamwise distribution of curvature K(s) is discretized by Equations (6)–(9).
- (4)
- The streamwise distribution of the slope angle φ(s) is calculated by Equation (12).
- (5)
- The Cartesian coordinates of the new blade surface along the streamwise direction are calculated by Equations (10) and (11).
3. Objects and Numerical Methods
No. | Total size | Size of the O-type region |
---|---|---|
1 | 19,527 | 309 × 57 |
2 | 43,307 | 481 × 81 |
3 | 93,707 | 721 × 121 |
4. Numerical Investigations about the Continuous-Curvature Effect
4.1. Effect of Curvature Continuity at the Leading Edge Blend Point
4.2. Effect of Curvature Continuity in the Main Surface
4.3. Validation of the RANS Computations with LES
5. Theoretical Investigations
5.1. Analysis of the Boundary-Layer Equations for the Leading-Edge and Main-Surface Regions
5.2. Further Investigation of the Spike-Generation Mechanism
6. Conclusions
Acknowledgments
Author Contributions
Nomenclature
C | chord length |
Cp | pressure coefficient, |
Cx | axial chord length |
di | distance between the point and the datum surface |
or | Lamé coefficients |
curvature | |
nose curvature | |
slope of curve or turbulent kinetic energy | |
basis functions of B-splines | |
number of B-spline control points | |
pressure or degree of B-splines | |
pressure at the inlet of the cascade | |
total pressure | |
total pressure at the inlet of the cascade | |
control points of B-splines | |
radius of curvature, | |
momentum thickness Reynolds number | |
streamwise length of the blade main surface | |
streamwise coordinate | |
turbulence intensity, | |
knot vector of B-splines | |
parameter of B-splines | |
components of B-spline knot vector | |
or | components of velocity referred to an orthogonal curvilinear coordinate |
Cartesian coordinates of Bezier control points | |
Cartesian coordinates | |
coordinates of an orthogonal curvilinear coordinate system |
Greek Symbols
inlet flow angle | |
intermittency | |
boundary layer thickness | |
constraint values | |
slope angle | |
kinematic viscosity | |
density | |
components of vorticity | |
total pressure loss coefficient |
Abbreviations
LE | leading edge |
LES | Large Eddy Simulation |
RANS | Reynolds-averaged Navier-Stokes |
Conflicts of Interest
References
- Walraevens, R.E.; Cumpsty, N.A. Leading edge separation bubbles on turbomachine blades. ASME J. Turbomach. 1995, 117, 115–125. [Google Scholar] [CrossRef]
- Tain, L.; Cumpsty, N.A. Compressor blade leading edges in subsonic compressible flow. J. Mech. Eng. Sci. 2000, 214, (Part C). 221–242. [Google Scholar] [CrossRef]
- Goodhand, M.N.; Miller, R.J. Compressor leading edge spikes: A new performance criterion. ASME J. Turbomach. 2011, 133, 021006:1–021006:8. [Google Scholar] [CrossRef]
- Giebmanns, A.; Backhaus, J.; Frey, C.; Schnell, R. Compressor leading edge sensitivities and analysis with an adjoint flow solver. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013; ASME: New York, NY, USA, 2013. [Google Scholar]
- Tuck, E. A criterion for leading-edge separation. J. Fluid Mech. 1991, 222, 33–37. [Google Scholar] [CrossRef]
- Elmstrom, M.E.; Millsaps, K.T.; Hobson, G.V.; Patterson, J.S. Impact of nonuniform leading edge coatings on the aerodynamic performance of compressor airfoils. ASME J. Turbomach. 2011, 133, 041004:1–041004:9. [Google Scholar] [CrossRef]
- Carter, A. Blade profiles for axial-flow fans, pumps, compressors, etc. Proc. Instn. Mech. Engrs. 1961, 175, 775–806. [Google Scholar] [CrossRef]
- Liu, H.; Liu, B.; Li, L.; Jiang, H. Effect of leading-edge geometry on separation bubble on a compressor blade. In Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, Atlanta, GA, USA, 16–19 June 2003; ASME: New York, NY, USA, 2003. [Google Scholar]
- Lu, H.; Xu, L. Circular leading edge with a flat for compressor blades. J. Propuls. Technol. 2003, 24, 532–536. (In Chinese) [Google Scholar]
- Wheeler, A.P.S.; Sofia, A.; Miller, R.J. The effect of leading-edge geometry on wake interactions in compressors. ASME J. Turbomach. 2009, 131, 041013:1–041013:8. [Google Scholar] [CrossRef]
- Korakianitis, T.; Papagiannidis, P. Surface-curvature-distribution effects on turbine-cascade performance. ASME J. Turbomach. 1993, 115, 334–341. [Google Scholar] [CrossRef]
- Korakianitis, T. Prescribed-curvature-distribution airfoils for the preliminary geometric design of axial-turbomachinery cascades. ASME J. Turbomach. 1993, 115, 325–333. [Google Scholar] [CrossRef]
- Korakianitis, T.; Wegge, B.H. Three dimensional direct turbine blade design method. In Proceedings of the AIAA 32nd Fluid Dynamics Conference and Exhibit, St. Louis, MO, USA, 24–26 June 2002; AIAA: Reston, VA, USA, 2002. AIAA paper 2002-3347. [Google Scholar]
- Korakianitis, T.; Hamakhan, I.A.; Rezaienia, M.A.; Wheeler, A.P.S. Two- and three-dimensional prescribed surface curvature distribution blade design (circle) method for the design of high efficiency turbines, compressors, and isolated airfoils. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, 6–10 June 2011; ASME: New York, NY, USA, 2011. [Google Scholar]
- Sommer, L.; Bestle, D. Curvature driven two-dimensional multi-objective optimization of compressor blade sections. Aerosp. Sci. Technol. 2011, 15, 334–342. [Google Scholar] [CrossRef]
- Fathi, A.; Shadaram, A. Multi-level multi-objective multi-point optimization system for axial flow compressor 2D blade design. Arab. J. Sci. Eng. 2013, 38, 351–364. [Google Scholar] [CrossRef]
- Langtry, R.B. A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2006. [Google Scholar]
- Langtry, R.B.; Menter, F.R.; Likki, S.R.; Suzen, Y.B.; Huang, P.G.; Völker, S. A correlation-based transition model using local variables—Part II: Test cases and industrial applications. ASME J. Turbomach. 2006, 128, 423–434. [Google Scholar] [CrossRef]
- Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [Google Scholar] [CrossRef]
- Du, H.; Zhao, S.; Gong, J.; Lu, X.; Zhu, J. Effects of low-Reynolds number on flow stability of a transonic compressor. In Proceedings of the ASME Turbo Expo 2012, Copenhagen, Denmark, 11–15 June 2012; ASME: New York, NY, USA, 2012. [Google Scholar]
- Marciniak, V.; Longhitano, M.; Kügeler, E. Assessment of transition modeling for the design of controlled diffusion airfoil compressor cascades. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013; ASME: New York, NY, USA, 2013. [Google Scholar]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Jeong, J.; Hussain, F. On the Identification of a Vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Gostelow, J.P.; McMullan, W.A.; Walker, G.J.; Mahallati, A. The role of streamwise vorticity in flows over turbomachine blade suction surfaces. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, 6–10 June 2011; ASME: New York, NY, USA, 2011; pp. 1091–1102. [Google Scholar]
- Perkins, S.; Henderson, A.D. Separation and relaminization at the circular arc leading edge of a controlled diffusion compressor stator. In Proceedings of ASME Turbo Expo 2012, Copenhagen, Denmark, 11–15 June 2012; ASME: New York, NY, USA, 2012; pp. 69384:1–69384:12. [Google Scholar]
- Mager, A.; Hansen, A. Laminar Boundary Layer over Flat Plate in a Flow Having Circular Streamlines; NACA Report No. TN-2658; NACA: Roxbury, MA, USA, 1952. [Google Scholar]
- Rosenhead, L. Laminar Boundary Layers: An Account of the Development, Structure, and Stability of Laminar Boundary Layers in Incompressible Fluids, Together with a Description of the Associated Experimental Techniques; Clarendon Press: Gloucestershire, UK, 1963; Chapter III. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Gu, C.-W.; Xiao, Y.-B. Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades. Energies 2014, 7, 8150-8177. https://doi.org/10.3390/en7128150
Song Y, Gu C-W, Xiao Y-B. Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades. Energies. 2014; 7(12):8150-8177. https://doi.org/10.3390/en7128150
Chicago/Turabian StyleSong, Yin, Chun-Wei Gu, and Yao-Bing Xiao. 2014. "Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades" Energies 7, no. 12: 8150-8177. https://doi.org/10.3390/en7128150
APA StyleSong, Y., Gu, C. -W., & Xiao, Y. -B. (2014). Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades. Energies, 7(12), 8150-8177. https://doi.org/10.3390/en7128150