Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organism and Culture Conditions
2.2. Photobioreactor Shapes
Macroelements | Culture broth compositions | ||
---|---|---|---|
Modified Kolkwitz medium (g/L) | Modified BG-11 medium (g/L) | Modified basal medium (g/L) | |
NaNO3 | 0.5 | ||
KNO3 | 0.59 | 0.59 | |
K2HPO4 | 0.14 | 0.04 | 0.038 |
MgSO4 · 7H2O | 0.09 | 0.075 | 0.02 |
CaCl2 · 2H2O | - | 0.036 | - |
Na2CO3 | - | 0.2 | - |
Citric acid | - | 0.006 | - |
FeEDTA | 1 (mL) | 1 (mL) | - |
Microelements | (mg/L) | (mg/L) | (mg/L) |
H3BO3 | 2.86 | 2.86 | 0.05 |
MnCl2·4H2O | 1.81 | 1.81 | 0.10 |
ZnSO4·7H2O | 0.22 | 0.22 | 0.01 |
Co(NO3)2 · 6H2O | 0.05 | 0.05 | 0.01 |
CuSO4 · 5H2O | 0.08 | 0.08 | 2.50 × 10−6 |
Na2MoO4 · 2H2O | 0.39 | 0.39 | 0.01 |
FeSO4 · 7H2O | - | - | 3.50 |
EDTA | - | - | 4.00 |
2.3. Culture Operations
2.3.1. Nitrogen and Phosphorus Starvation Conditions
2.4. Analytical Methods
2.5. Statistical Analyses
3. Results and Discussion
3.1. Cultivation of Chlorella vulgaris CCALA 896 Using Three Different Culture Broths
Culture broths | Proteins (%) | Carbohydrates (%) | Lipids (%) |
---|---|---|---|
Basal | nd 1 | nd | 27.9 ± 0.2 |
BG-11 | 39.2 ± 1.1 | 24.5 ± 0.3 | 25.3 ± 0.1 |
Kolkwitz | 37.2 ± 0.8 | 27.7 ± 0.2 | 26.8 ± 0.2 |
3.2. Cumulative Lipids in Chlorella vulgaris CCALA 896 Grown under Nutritional Starvation Conditions
3.3. Changes in the Dry-Biomass Composition of Chlorella vulgaris CCALA 896 Cultured by Using Two Phases: A Cultivation Strategy (A Nutrient-Sufficient Phase Followed by a N- and P- Deprived Phase)
Time (h) | Biomass composition | |||||
---|---|---|---|---|---|---|
Lipids (%) | Proteins (%) | Carbohydrates (%) | ||||
BG-11 | Kolkwitz | BG-11 | Kolkwitz | BG-11 | Kolkwitz | |
T0 | 20.9 ± 0.07 | nd 1 | 45.1 ± 0.03 | nd | 27.6 ± 0.02 | nd |
T94 | 17.9 ± 0.01 | 23.9 ± 0.01 | 42.6 ± 1.03 | 37.5 ± 0.17 | 28.8 ± 0.20 | 28.7 ± 0.15 |
T142 | 35.7 ± 0.06 | 31.1 ± 0.06 | 30.3 ± 0.40 | nd | 30.7 ± 0.15 | nd |
T166 | 44.4 ± 0.05 | 34.4 ± 0.03 | nd | 27.2 ± 0.01 | nd | 34.7 ± 0.18 |
T190 | 52.7 ± 0.11 | 46.4 ± 0.03 | 25.9 ± 0.11 | nd | 18.6 ± 0.08 | nd |
T214 | 54.5 ± 0.10 | 49.7 ± 0.02 | nd | nd | nd | 24.5 ± 0.01 |
T238 | 56.3 ± 0.09 | 53.0 ± 0.02 | 24.1 ± 0.10 | 25.6 ± 0.12 | 15.2 ± 0.13 | nd |
Medium | Specific growth rate (h−1) | Biomass productivity (g (dw)/L/d) | Final lipid content (%) | Lipid productivity (g/L/d) |
---|---|---|---|---|
Modified BG-11 | 0.0892 ± 0.0061 | 0.200 ± 0.047 | 56.3 ± 0.9 | 0.113 ± 0.050 |
Modified Kolkwitz | 0.0773 ± 0.0080 | 0.190 ± 0.028 | 53.0 ± 0.2 | 0.101 ± 0.030 |
3.4. Cultivation of Chlorella vulgaris CCALA 896 in A Modified Kolkwitz Medium under the Conditions of Three Different Repetitive Batch-Growth Regimens
Chlorella (strains) | PBRs 1 | Growth mode | Light intensity (µE/m2/s) | Media | T (°C) | Biomass productivity (g/L/d) | Lipids | References | |
---|---|---|---|---|---|---|---|---|---|
Content (%) | Productivity (g/L/d) | ||||||||
C. vulgaris CCALA 896 | Cylindrical | B 2 | 150 | BG-11 | 30 | 0.200 | 56.3 | 0.113 | Our results |
C. sp. | Rectangular | B | 600 | ASW 5 | 30 | - | 52.2 | 0.124 | [40] |
C. sp. | Rectangular | SCR | 600 | ASW | 30 | - | 43.65 | 0.139 | [40] |
C. vulgaris CCAP 211/11B | Helical | B | 130 | -- | 25 | 0.024 | 58.0 | - | [23] |
C. vulgaris AG10032 | Column | B/FB 4 | 200 | BG-11 | 18/25 | 0.145 | 53.0 | 0.077 | [41] |
C. vulgaris 2714 | Flasks | B | - | OCM 6 | 26 | - | 27.38 | - | [42] |
C. vulgaris ESP-31 | ns | B | 60 | Basal | 25 | - | 22.0 | 0.056 | [24] |
C. vulgaris CCAP 211 | Erlenmeyer flasks | B | 70 | BBM 7 | 30 | - | - | 0.008 | [43] |
C. vulgaris | ns 8 | B | 800 lux | - | 22 | - | 62.9 | - | [22] |
C. vulgaris KCTCAG10032 | ns | B | 150 | BG-11 | 25 | 0.105 | - | 0.007 | [44] |
3.5. Cultivation of Chlorella vulgaris CCALA 896 in a Modified BG-11 Medium Using a Flat-Glass Photobioreactor (FGPBR)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Demirbas, A.; Demirbas, M.F. Green Energy and Technology, Algae Energy, Algae as a New Source of Biodiesel, 1st ed.; Springer: London, UK, 2010; pp. 139–157. [Google Scholar]
- Campbell, M.N. Biodiesel: Algae as a renewable source for liquid fuel. Guelph Eng. J. 2008, 1, 2–7. [Google Scholar]
- Demirbas, A. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 1998, 77, 1117–1120. [Google Scholar] [CrossRef]
- Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G. Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Convers. Manag. 2006, 47, 3272–3287. [Google Scholar]
- Xu, H.; Miao, X.; Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006, 126, 499–507. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Moser, B.R. Biodiesel production, properties, and feedstocks. In Biofuels: Global Impact on Renewable Energy, Production Agriculture, and Technological Advancements; Tomas, D., Lakshmanan, P., Songstad, D., Eds.; Springer New York: New York, NY, USA, 2011; pp. 285–347. [Google Scholar]
- Chisti, Y. Fuels from microalgae. Biofuels 2010, 1, 233–235. [Google Scholar] [CrossRef]
- Milne, T.A.; Evans, R.J.; Nagle, N. Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites. Biomass 1990, 21, 219–232. [Google Scholar] [CrossRef]
- Dote, Y.; Sawayama, S.; Inoue, S.; Minowa, T.; Yokoyama, S. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 1994, 73, 1855–1857. [Google Scholar] [CrossRef]
- Milnowa, T.; Yokoyama, S.; Kishimoto, M.; Okakura, T. Oil production from algae cells of Dunaliella tereiolata by direct thermochemical liquefaction. Fuel 1995, 74, 1735–1738. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Sharma, K.K.; Schuhmann, H.; Schenk, P.M. High lipid induction in microalgae for biodiesel production. Energies 2012, 5, 1532–1553. [Google Scholar] [CrossRef]
- Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar]
- Illman, A.M.; Scragg, A.H.; Shales, S.W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 2000, 27, 631–635. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef]
- Hu, Q. Environmental effects on cell composition. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell Science Ltd.: Oxford, UK, 2004; Volume 1, pp. 83–93. [Google Scholar]
- Jiang, Y.; Hebly, M.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M. Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production. Water Res. 2011, 45, 1309–1321. [Google Scholar]
- Guest, J.S.; van Loosdrecht, M.C.M.; Skerlos, S.J.; Love, N.G. Lumped pathway metabolic model of organic carbon accumulation and mobilization by the alga Chlamydomonas reinhardtii. Environ. Sci. Technol. 2013, 47, 3258–3267. [Google Scholar]
- Pulz, O. Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 2001, 57, 287–293. [Google Scholar] [CrossRef]
- Piorreck, M.; Baasch, K.H.; Pohl, P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 1984, 23, 207–216. [Google Scholar] [CrossRef]
- Scragg, A.H.; Illman, A.M.; Carden, A.; Shales, S.W. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 2002, 23, 67–73. [Google Scholar] [CrossRef]
- Yeh, K.-L.; Chang, J.-S. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 2012, 105, 120–127. [Google Scholar] [CrossRef]
- Olivieri, G.; Salatino, P.; Marzocchella, A. Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications. J. Chem. Technol. Biotechnol. 2014, 89, 178–195. [Google Scholar] [CrossRef]
- Carlozzi, P. Hydrogen photoproduction by Rhodopseudomonas palustris 42OL cultured at high irradiance under a semicontinuous regime. J. Biomed. Biotechnol. 2012, 2012. [Google Scholar] [CrossRef]
- Carlozzi, P.; Pinzani, E. Growth characteristics of Arthrospira platensis cultured inside a new close-coil photobioreactor incorporating a mandrel to control culture temperature. Biotechnol. Bioeng. 2005, 90, 675–684. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parsons, T.R. A Practical Hand Book of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Woods Hole, MA, USA, 1972; pp. 185–199. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Marsh, J.B.; Weinstein, D.B. Simple charring methods for determination of lipids. J. Lipid Res. 1966, 7, 574–576. [Google Scholar]
- Carlozzi, P. The effect of irradiance growing on hydrogen photoevolution and on the kinetic growth in Rhodopseudomonas palustris, strain 420L. Int. J. Hydrog. Energy 2009, 34, 7949–7958. [Google Scholar] [CrossRef]
- Takagi, M.; Watanabe, K.; Yamaberi, K.; Yoshida, T. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol. 2000, 54, 112–117. [Google Scholar]
- Li, Y.; Horsman, M.; Wang, B.; Wu, N.; Lan, C.Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008, 81, 629–636. [Google Scholar] [CrossRef]
- Fogg, G.E.; Collyer, D.M. Accumulation of lipids by algae. In Algal Culture: From Laboratory to Pilot Plant; Burlew, J.S., Ed.; Carnegie Institution of Washington: Washington, DC, USA, 1953; Volume 1, pp. 177–181. [Google Scholar]
- Xin, L.; Hu, H.; Ke, G.; Sun, Y. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010, 101, 5494–5500. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar]
- Yeh, K.-L.; Chen, Y.-C.; Chang, J.-S. pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. Biochem. Eng. J. 2012, 64, 1–7. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Wu, W.-T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 2009, 100, 3921–3926. [Google Scholar] [CrossRef]
- Mujtaba, G.; Choi, W.; Lee, C.-G.; Lee, K. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour. Technol. 2012, 123, 279–283. [Google Scholar] [CrossRef]
- Heredia-Arroyo, T.; Wei, W.; Ruan, R.; Hu, B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 2011, 35, 2245–2253. [Google Scholar]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Borghi, M.D. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Yoo, C.; Jun, S.-Y.; Lee, J.-Y.; Ahn, C.-Y.; Oh, H.-M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 2010, 101, S71–S74. [Google Scholar] [CrossRef]
- Li, Y.; Hua, D.; Zhang, J.; Gao, M.; Zhao, Y.; Xu, H.; Liang, X.; Jin, F.; Zhang, X. Influence of inoculum to substrate ratios (ISRs) on the performance of anaerobic digestion of algal residues. Ann. Microbiol. 2013. [Google Scholar] [CrossRef]
- Castrillo, M.; Lucas-Salas, L.M.; Rodriguez-Gil, C.; Martinez, D. High pH-induced flocculation-sedimentation and effect of supernatant reuse on growth rate and lipid productivity of Scenedesmus obliquus and Chlorella vulgaris. Bioresour. Technol. 2013, 128, 324–329. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vaičiulytė, S.; Padovani, G.; Kostkevičienė, J.; Carlozzi, P. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity. Energies 2014, 7, 3840-3857. https://doi.org/10.3390/en7063840
Vaičiulytė S, Padovani G, Kostkevičienė J, Carlozzi P. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity. Energies. 2014; 7(6):3840-3857. https://doi.org/10.3390/en7063840
Chicago/Turabian StyleVaičiulytė, Sigita, Giulia Padovani, Jolanta Kostkevičienė, and Pietro Carlozzi. 2014. "Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity" Energies 7, no. 6: 3840-3857. https://doi.org/10.3390/en7063840
APA StyleVaičiulytė, S., Padovani, G., Kostkevičienė, J., & Carlozzi, P. (2014). Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity. Energies, 7(6), 3840-3857. https://doi.org/10.3390/en7063840