Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology
Abstract
:1. Introduction
2. Brief Description of the Proposed Method
3. Empirical Estimation of Limit Values for Parameter k
3.1. Case History 1: La Camocha Colliery
3.2. Case History 2: Figaredo Colliery
3.3. Determination of Parameter k Based on Experience
4. Analytical and Semi-Empirical Estimation of Limit Values for Parameter K
5. Using the model
5.1. Estimation of the Geothermal Power of a Mine
5.2. Estimation the Geothermal Power for Several Mines in the Same Coalfield
5.3. Could the Total Geothermal Power of Abandoned Mines in Europe be Estimated?
6. Conclusions
- -
- Although mines present a high potential for geothermal utilization, there are only few cases known in Europe where this potential has been detected, and accurately used.
- -
- A method has been developed to allow a non-complex estimation of the limits for the geothermal potential of an abandoned underground coal mine, from the value of its total production.
- -
- The method is useful for making geothermal resource estimates for given mining regions where coal extraction data are available; it should not be used to design a geothermal system at a mine site.
- -
- The specific maximum and minimum values, kmin = 0.25 and kmax = 1.0, could also be applied in coal regions similar to Asturias. Many parameters can influence these values, as for example thermal properties and hydrogeological characteristics of the rockmass, average temperature of virgin rock and gradient of temperature with depth, climate and average temperatures of the air and the river water and mining methods…etc. Consequently, values of kmin and kmax could be different in other regions.
- -
- Assuming that the application of the formula has a high level of uncertainity, it has been estimated that an underground coal mine has a geothermal power of approximately 2.5 MWt per each 10,000,000 of tonnes produced.
- -
- At least approximately 3000 MWt could be used from underground coal mines in the European Union, without including base-metals mines; the potential for coal mines is equivalent to 3,000 eolic generators or thereabouts, to the energy supplied by a wind power park with 90 generators for each country in the European Union.
- -
- If this energy potential were used, an important reduction in CO2 emissions of approximately 5 million tonnes of CO2 per year could be reached.
- -
- A good practice in mining management would be to make some mine-measurements, such as recording air flow rates, quantity of water actually pumped or air and water temperatures; this data would be of the most interest for future studies, especially when approaching the mine closure date.
Author Contributions
Conflicts of Interest
References
- Hall, A.; Scott, J.A.; Shanga, H. Geothermal energy recovery from underground mines. Renew. Sustain. Energy Rev. 2011, 15, 916–924. [Google Scholar] [CrossRef]
- Klinger, C.; Charmoille, A.; Bueno, J.; Gzyl, G.; Garzon Súcar, B. Strategies for follow-up care and utilisation of closing and flooding in European hard coal mining areas. Int. J. Coal Geol. 2012, 89, 51–61. [Google Scholar] [CrossRef]
- Younger, P.L. Hydrogeological challenges in a low-carbon economy. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 7–27. [Google Scholar] [CrossRef]
- Jessop, A.M.; MacDonald, J.K.; Spence, H. Clean energy from abandoned mines at Springhill, Nova Scotia. Energy Sources 1995, 17, 93–106. [Google Scholar] [CrossRef]
- Jessop, A.M. Geothermal energy from old mines at Springhill, Nova Scotia, Canada. In Proceedings of the World Geothermal Congress, Florence, Italy, 18–31 May 1995; pp. 463–468.
- Raymond, J.; Therrien, R. Low-temperature geothermal potential of the flooded Gaspé Mines, Québec, Canada. Geothermics 2008, 37, 189–210. [Google Scholar] [CrossRef]
- Ghoreishi, S.A.; Ghomshei, M.M.; Hassani, P.; Abbasy, F. Sustainable heat extraction from abandoned mine tunnels: A numerical model. J. Renew. Sustain. Energy 2012, 4. [Google Scholar] [CrossRef]
- Grasby, S.E.; Allen, D.M.; Bell, S.; Chen, Z.; Ferguson, G.; Jessop, A.; Kelman, M.; Ko, M.; Majorowicz, J.; Moore, M.; et al. Geothermal Energy Resource Potential of Canada; Open File 6914; Geological Survey of Canada: Ottawa, ON, Canada, 2012. [Google Scholar]
- Renz, A.; Ruhaak, W.; Schatzl, P.; Diersch, H.-J.G. Numerical modelling of geothermal use of mine water: Challenges and examples. Mine Water Environ. 2009, 28, 2–14. [Google Scholar] [CrossRef]
- Raymond, J.; Therrien, R. Optimizing the design of a geothermal district heating and cooling system located at a flooded mine in Canada. Hydrogeol. J. 2014, 22, 217–231. [Google Scholar] [CrossRef]
- Malolepszy, Z. Man-made, low-temperature geothermal reservoirs in abandoned workings of underground mines on example of Nowa Ruda coal mine, Poland. In Proceedings of the International Geothermal Conference, Reykjavík, Iceland, 14–17 September 2003; pp. 23–29.
- Malolepszy, Z. Low temperature, man-made geothermal reservoirs in abandoned workings of underground mines. In Proceedings of the 28th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 27–29 January 2003; Stanford University: Stanford, CA, USA, 2003; pp. 259–265. [Google Scholar]
- Malolepszy, Z.; Demollin-Schneiders, E.; Bowers, D. Potential use of geothermal mine waters in Europe. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005; International Geothermal Association: Antalya, Turkey, 2005; pp. 1–3. [Google Scholar]
- Demollin-Schneiders, E.; Malolepszy, Z.; Bowers, D. Potential use of geothermal energy from mine water in Europe for cooling and heating. In Proceedings of the International Conference Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, 19–21 May 2005; Santamouris, M., Ed.; Heliotopos Conferences: Santorini, Greece, 2005; pp. 683–685. [Google Scholar]
- Tóth, A.; Bobok, E. A prospect geothermal potential of an abandoned copper mine. In Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 January 2007; pp. 1–3.
- Hamm, V.; Bazargan Sabet, B. Modelling of fluid flow and heat transfer to assess the geothermal potential of a flooded coal mine in Lorraine, France. Geothermics 2010, 39, 177–186. [Google Scholar] [CrossRef]
- Ferket, H.L.W.; Laenen, B.J.M.; Van Tongeren, P.C.H. Transforming flooded coal mines to large-scale geothermal and heat storage reservoirs: What can we expect? In Mine Water—Managing the Challenges, Proceedings of the International Mine Water Association Congress 2011, Aachen, Germany, 4–11 September 2011; Rüde, T.R., Freund, A., Wolkersdorfer, C., Eds.; International Mine Water Association: Wendelstein, Germany, 2011; pp. 171–176. [Google Scholar]
- Uhlík, J.; Baier, J. Model evaluation of thermal energy potential of hydrogeological structures with flooded mines. Mine Water Environ. 2012, 31, 179–191. [Google Scholar] [CrossRef]
- Municipal building, Park Hills, Missouri; Ghpc #CS-064; Geothermal Heat Pump Consortium: Washington, DC, USA, 1997.
- Watzlaf, G.R.; Ackman, T.E. Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ. 2006, 25, 1–14. [Google Scholar] [CrossRef]
- Guo, P.; He, M.; Yang, Q.; Chen, C. Wellhead anti-frost technology using deep mine geothermal energy. Min. Sci. Technol. China 2011, 21, 525–530. [Google Scholar] [CrossRef]
- He, M.; Zhang, Y.; Guo, D.; Qian, Z. Numerical analysis of doublet wells for cold energy storage on heat damage treatment in deep mines. J. China Univ. Min. Technol. 2006, 16, 278–282. [Google Scholar]
- Zhang, Y.; Guo, D. Effect of cold energy storage of doublet-wells aquifer thermal energy storage in Sanhejian coal mine. Energy Procedia 2012, 14, 1730–1734. [Google Scholar] [CrossRef]
- Toraño, J.; Rodríguez, R.; Rivas, J.M. Application of numerical methods in the analysis of the hydrogeology of an area affected by underground mining. In Proceedings of the Congresso de Métodos Computacionais em Engenharia, Lisboa, Portugal, 31 May–2 June 2004; Asociación Portuguesa de Mecánica Teórica Aplicada y Computacional (AMPTAC). Servicio de publicaciones del CIMNE: Barcelona, Spain, 2004; pp. 1–15. [Google Scholar]
- Jardón, J.; Pendas, F.; Ordóñez, A.; Cordero, C.; Álvarez, C.; Garzón, B. Aprovechamiento de las aguas de mina en la Cuenca Central Asturiana como recurso hídrico y energético. In Proceedings of the XII International Congress on Energy and Mineral Resources, Oviedo, Spain, 7–11 October 2007; Consejo Superior de Colegios de Ingenieros de Minas: Madrid, Spain, 2007; pp. 1–7. (In Spanish)[Google Scholar]
- Luque, V.C.; Pedeca, S.C.L.E. Manual de ventilación de minas; Pedeca S. Coop. Ltda: Madrid, Spain, 1988; p. 732. (In Spanish) [Google Scholar]
- Díaz Aguado, M.B.; González Nicieza, C. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain. Int. J. Coal Geol. 2007, 69, 253–266. [Google Scholar] [CrossRef]
- Rodríguez, R.; Lombardía, C. Analysis of methane emissions in a tunnel excavated through Carboniferous strata based on underground coal mining experience. Tunn. Undergr. Space Technol. 2010, 25, 456–468. [Google Scholar] [CrossRef]
- Rambaud, C. Situación actual y tendencias futuras en las labores de preparación. In Proceedings of the Jornadas Técnicas sobre Labores de Preparación, Madrid, Spain, 21–22 November 1990; Instituto Tecnológico Geominero de España: Madrid, Spain, 1990; pp. 23–25. (In Spanish)[Google Scholar]
- Rodríguez, R.; Díaz, M.B. Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method. Renew. Energy 2009, 34, 1716–1725. [Google Scholar] [CrossRef]
- Alvarez, T.J.; Rodríguez, R.; Rivas, J.M.; Casal, M.D. Economic and technical results mining a 4 m thick coal seam in Spanish Carbonar Colliery. Glückauf 2013, 139, 323–328. [Google Scholar]
- Toraño, J.; Rodríguez, R.; Rivas, J.M. New techniques versus experience: A real case of mine ventilation analysis. In Proceedings of the 10th U.S./North American mine ventilation symposium, Anchorage, AK, USA, 16–19 May 2004; Bandopadhyay, S., Ganguli, R., Eds.; Taylor & Francis: London, UK, 2004; pp. 487–492. [Google Scholar]
- Pendás, F.; García, M.P. Caracterización hidrogeológica de la minería de la Cuenca Central Asturiana. In Proceedings of the VIII Congreso Internacional de Minería y Metalurgia, Oviedo, Spain, 16–22 October 1988; Asociación Nacional de Ingenieros de Minas de España: Oviedo, Spain, 1988; pp. 279–298. (In Spanish)[Google Scholar]
- Del Rosal, I. La productividad en la minería española del carbón. Revista de Minas 1999, 19–20, 213–218. (In Spanish) [Google Scholar]
- Del Rosal, I. La reconversión del carbón, una dependencia plena de la decisión pública. La Empresa Pública 2000, 1, 156–166. (In Spanish) [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Díez, R.R.; Díaz-Aguado, M.B. Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology. Energies 2014, 7, 4241-4260. https://doi.org/10.3390/en7074241
Díez RR, Díaz-Aguado MB. Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology. Energies. 2014; 7(7):4241-4260. https://doi.org/10.3390/en7074241
Chicago/Turabian StyleDíez, Rafael Rodríguez, and María B. Díaz-Aguado. 2014. "Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology" Energies 7, no. 7: 4241-4260. https://doi.org/10.3390/en7074241
APA StyleDíez, R. R., & Díaz-Aguado, M. B. (2014). Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology. Energies, 7(7), 4241-4260. https://doi.org/10.3390/en7074241