Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine
Abstract
:1. Introduction
2. Description of the RCM
2.1. Configuration of the RCM
Item | Parameter |
---|---|
Stroke | 190 mm to 250 mm |
Length of constant volume chamber | 12 mm to 20 mm |
Reactor cylinder bore | 50 mm |
Compression ratio | 8.42 to 16.9 |
Average piston motion speed | 9 m/s |
2.2. Operation Principle of the RCM Test Bench
3. Performance Characterization Tests of the RCM
4. Auto-Ignition Performance Tests of the RCM
DME:O2:N2 (mole proportion) | Dilution ratio (%) | Driving gas pressure (MPa) | Compression ratio | Initial pressure (MPa) |
---|---|---|---|---|
1:3:20 | 36.31 | 0.25 to 0.6 | 9.5 to 16.5 | 0.04 to 0.09 |
1:3:25 | 47.29 | |||
1:3:30 | 55.04 | |||
1:3:35 | 60.81 | |||
1:4:30 | 42.72 |
4.1. Definition of Ignition Delay Time and Repeatability of Experiments
4.2. Effect of Driving Gas Pressure on Two-Stage Ignition Delay
4.3. Effect of Compression Ratio on Two-Stage Ignition Delay
Test condition group | Test condition | Changing trend |
---|---|---|
Ⅰ | 55.04% dilution, P0 = 0.08 MPa | Gradually shortens |
Ⅱ | 55.04% dilution, P0 = 0.04 MPa | Gradually extends |
Ⅲ | 60.81% dilution, P0 = 0.04 MPa | Initially shortens and then extends |
60.81% dilution, P0 = 0.08 MPa |
4.4. Effect of Initial Pressure on Two-Stage Ignition Delay
4.5. Effect of Nitrogen Dilution Ratio on Two-Stage Ignition Delay
Test Condition Group | Test Condition | Changing Trend |
---|---|---|
I | ε = 8.82, P0 = 0.08 MPa | Gradually shortens |
II | ε = 8.82, P0 = 0.06 MPa | Initially shortens and then extends |
ε = 9.73, P0 = 0.08 MPa | ||
ε = 9.73, P0 = 0.06 MPa | ||
III | ε = 12.02, P0 = 0.08 MPa | Gradually extends |
ε = 12.02, P0 = 0.06 MPa |
5. Conclusions
- (1)
- With increasing driving gas pressure, both the first-stage and the overall ignition delays tend to increase. This result might be based on the fact that the DME–O2–N2 mixture has a low auto-ignition temperature. With low driving gas pressure and piston motion speed, the DME–O2–N2 mixture is much more strongly influenced by compression time. With high driving gas pressure and piston motion speed, the mixture is less influenced by the compression time. The driving gas pressure within a certain range insignificantly influences the compressed pressure.
- (2)
- With increasing compression ratio, the compressed temperature rises and the first-stage ignition delay of the DME–O2–N2 mixture shortens, whereas the ignition delay of the second-stage extends. Under the various test condition groups, the overall ignition delay presents different trends: gradually shorten, then gradually extend, and initially shorten and then extend. This result can be attributed to the fact that the NTC region of the overall ignition delay of the DME–O2–N2 mixture changes with nitrogen dilution ratios and compressed pressure conditions.
- (3)
- With the increasing initial pressure, both the first-stage and the second-stage ignition delays shorten. The second-stage ignition delay shortens to a greater extent than that of the first-stage. Compared with a lower compression ratio, the overall ignition delay of the DME–O2–N2 mixture under a high compression ratio shortens to a greater extent.
- (4)
- With the increasing nitrogen dilution ratio, the first-stage ignition delay shortens, whereas the ignition delay of the second-stage extends. The increasing nitrogen dilution ratio leads to an increase in compressed pressure. The overall ignition delay of the DME–O2–N2 mixture presents different trends: gradually shorten, then gradually extend, and initially shorten and then extend.
Nomenclature
P0 | initial pressure [MPa] |
Pc | compressed pressure [MPa] |
Pdrive | driving gas pressure [MPa] |
T0 | initial temperature [K] |
Tc | compressed temperature [K] |
Greek letters
γ | ratio of specific heat |
ε | compression ratio |
Acronyms
HCCI | homogeneous charge compression ignition |
RCM | rapid compression machine |
RCEM | rapid compression and expansion machine |
NTC | negative temperature coefficient |
TDC | top dead center |
BDC | bottom dead center |
Acknowledgments
Author Contributions
Conflict of Interest
References
- Sung, C.-J.; Curran, H.J. Using rapid compression machines for chemical kinetics studies. Prog. Energy Combust. Sci. 2014, 44, 1–18. [Google Scholar]
- Mittal, G.; Sung, C.-J. Aerodynamics inside a rapid compression machine. Combust. Flame 2006, 145, 160–180. [Google Scholar] [CrossRef]
- Di Sante, R. Measurements of the auto-ignition of n-heptane/toluene mixtures using a rapid compression machine. Combust. Flame 2012, 159, 55–63. [Google Scholar]
- Allen, C.; Mittal, G.; Sung, C.-J.; Toulson, E.; Lee, T. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proc. Combust. Inst. 2011, 33, 3367–3374. [Google Scholar] [CrossRef]
- Gupta, S.B.; Bihari, B.; Sekar, R.; Klett, G.M.; Ghaffarpour, M. Ignition characteristics of methane-air mixtures at elevated temperatures and pressures. SAE Tech. Pap. 2005, 2005. [Google Scholar] [CrossRef]
- Lim, O.T.; Iida, N. The investigation about the effects of thermal stratification in combustion chamber on HCCI combustion fueled with DME/n-Butane using Rapid Compression Machine. Exp. Therm. Fluid Sci. 2012, 39, 123–133. [Google Scholar] [CrossRef]
- Katsumata, M.; Morikawa, K.; Tanabe, M. Behavior of shock wave and pressure wave of SI knocking with super rapid compression machine. SAE Tech. Pap. 2011, 2011. [Google Scholar] [CrossRef]
- Kobashi, Y.; Tanaka, D.; Maruko, T.; Kato, S.; Kishiura, M.; Senda, J. Effects of mixedness and ignition timings on PCCI combustion with a dual fuel operation. SAE Tech. Pap. 2011, 2011. [Google Scholar] [CrossRef]
- Guang, H.; Yang, Z.; Huang, Z.; Lu, X. Experimental study of n-heptane ignition delay with carbon dioxide addition in a rapid compression machine under low-temperature conditions. Chin. Sci. Bull. 2012, 57, 3953–3960. [Google Scholar] [CrossRef]
- Araki, M.; Dong, H.; Obokata, T.; Shiga, S.; Lshima, T.; Aoki, K. Characteristics of CNG direct injection with auto-ignition. SAE Tech. Pap. 2005, 2005. [Google Scholar] [CrossRef]
- Monteiro, E.; Sotton, J.; Bellenoue, M.; Moreira, N.A.; Malheiro, S. Experimental study of syngas combustion at engine-like conditions in a rapid compression machine. Exp. Therm. Fluid Sci. 2011, 35, 1473–1479. [Google Scholar] [CrossRef]
- Murase, E.; Hanada, K. Control of the start of HCCI combustion by pulsed flame jet. SAE Tech. Pap. 2002, 2002. [Google Scholar] [CrossRef]
- Guibert, P.; Keromnes, A.; Legros, G. Development of a turbulence controlled rapid compression machine for HCCI combustion. SAE Tech. Pap. 2007, 2007. [Google Scholar] [CrossRef]
- Donovan, M.T.; He, X.; Zigler, B.T.; Palmer, T.R.; Wooldridge, M.S.; Atreya, A. Demonstration of a free-piston rapid compression facility for the study of high temperature combustion phenomena. Combust. Flame 2004, 137, 351–365. [Google Scholar] [CrossRef]
- Kee, S.-S.; Shioji, M.; Mohammadi, A.; Niishi, M.; Inoue, Y. Knock Characteristics and their control with hydrogen injection using a rapid compression/expansion machine. SAE Tech. Pap. 2007, 2007. [Google Scholar] [CrossRef]
- Kikusato, A.; Fukasawa, H.; Nomura, K.; Kusaka, J.; Daisho, Y. A study on the characteristics of natural gas combustion at a high compression ratio by using a rapid compression and expansion Machine. SAE Tech. Pap. 2012, 2012. [Google Scholar] [CrossRef]
- Cho, G.; Jeong, D.; Moon, G.; Bae, C. Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine. Energy 2010, 35, 4184–4191. [Google Scholar] [CrossRef]
- Pöschl, M.; Sattelmayer, T. Influence of temperature inhomogeneities on knocking combustion. Combust. Flame 2008, 153, 562–573. [Google Scholar] [CrossRef]
- Goldsborough, S.S. A crevice blow-by model for a Rapid Compression Expansion Machine used for chemical kinetic (HCCI) studies. SAE Tech. Pap. 2007, 2007. [Google Scholar] [CrossRef]
- Pan, L.; Hu, E.; Zhang, J.; Zhang, Z.; Huang, Z. Experimental and kinetic study on ignition delay times of DME/H2/O2/Ar mixtures. Combust. Flame 2014, 161, 735–747. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Yang, X.; Qian, Y.; Lu, X.; Huang, Z. Autoignition of butanol isomers/n-heptane blend fuels on a rapid compression machine in N2/O2/Ar mixtures. Sci. China 2013, 57, 461–470. [Google Scholar]
- Würmel, J.; Silke, E.J.; Curran, H.J.; Ó Conaire, M.S.; Simmie, J.M. The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine. Combust. Flame 2007, 151, 289–302. [Google Scholar]
- Ihme, M. On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combust. Flame 2012, 159, 1592–1604. [Google Scholar] [CrossRef]
- Toulson, E.; Allen, C.M.; Miller, D.J.; Schock, H.J.; Lee, T. Optimization of a multi-step model for the auto-ignition of dimethyl ether in a rapid compression machine. Energy Fuels 2010, 24, 3510–3516. [Google Scholar] [CrossRef]
- Mittal, G.; Chaos, M.; Sung, C.J.; Dryer, F.L. Dimethyl ether autoignition in a rapid compression machine: Experiments and chemical kinetic modeling. Fuel Process. Technol. 2008, 89, 1244–1254. [Google Scholar] [CrossRef]
- Pyun, S.H.; Ren, W.; Lam, K.-Y. Shock tube measurements of methane, ethylene and carbon monoxide time-histories in DME pyrolysis. Combust. Flame 2013, 160, 747–754. [Google Scholar] [CrossRef]
- Yu, Y.; Vanhove, G.; Griffiths, J.F.; De Ferrières, S.; Pauwels, J.-F. Influence of EGR and syngas components on the autoignition of natural gas in a rapid compression machine: A detailed experimental study. Energy Fuels 2013, 27, 3988–3996. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, H.; Zhang, H.; Shi, Z.; Lu, H.; Zhao, G.; Yao, B. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine. Energies 2014, 7, 6083-6104. https://doi.org/10.3390/en7096083
Liu H, Zhang H, Shi Z, Lu H, Zhao G, Yao B. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine. Energies. 2014; 7(9):6083-6104. https://doi.org/10.3390/en7096083
Chicago/Turabian StyleLiu, Hao, Hongguang Zhang, Zhicheng Shi, Haitao Lu, Guangyao Zhao, and Baofeng Yao. 2014. "Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine" Energies 7, no. 9: 6083-6104. https://doi.org/10.3390/en7096083
APA StyleLiu, H., Zhang, H., Shi, Z., Lu, H., Zhao, G., & Yao, B. (2014). Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine. Energies, 7(9), 6083-6104. https://doi.org/10.3390/en7096083