On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study
Abstract
:1. Introduction
1.1. The Plutonium Problem
1.2. Why Molten Salt Reactors (MSRs)
- flexibility to utilize any fissile fuel in continuous operation
- minimum of special fuel preparation
- arbitrarily small fuel shipments
- inherent safety features
- limitation of the plutonium availability and reduction of the risk of proliferation
- possibility of combination with the gas-fluoride technique of fuel reprocessing
- possibility to use fuel of any nuclide composition without plutonium purification from minor actinides and fissile products
- fissile material which is once inserted is not needed to be taken out anymore.
1.3. Development of MSRs
2. Materials and Methods [26]
2.1. Reference Configurations
2.1.1. Molten Salt Fast Reactor (MSFR)
2.1.2. Sodium Cooled Fast Reactor (SFR) Fuel Assembly
Component | Dimension | Unit |
---|---|---|
Outer pin diameter | 8.5 | mm |
Cladding thickness | 0.52 | mm |
Pitch to diameter | 1.2 | - |
Can wall thickness | 4.5 | mm |
Fuel density | 9.26 | g/cm3 |
2.1.3. Light Water Reactor Mixed Oxide (LWR MOX) Fuel Assembly
Component | Dimension | Unit |
---|---|---|
Outer pin diameter | 9.166 | mm |
Cladding thickness | 0.573 | mm |
Pin pitch | 12.6 | mm |
Assembly pitch | 21.42 | cm |
Fuel density | 10.41 | g/cm3 |
2.2. Calculation Tool and Material
Isotope | Content | Unit |
---|---|---|
Pu-238 | 2.62 | % |
Pu-239 | 54.43 | % |
Pu-240 | 23.70 | % |
Pu-241 | 11.28 | % |
Pu-242 | 6.83 | % |
Am-241 | 1.14 | % |
2.3. Results and Discussion
Reactor type | MSFR | LWR MOX assembly | SFR assemblies | |||
---|---|---|---|---|---|---|
Operational parameter | 60 years | 80 years | 4.3% Pufiss | 18.3% | 22.4% | 26.9% |
Pu-238 | 3.9% | 3.9% | 0.7% | 1.4% | 1.7% | 1.9% |
Pu-239 | 22.4% | 22.7% | 45.5% | 54.8% | 52.1% | 49.8% |
Pu-240 | 46.6% | 46.5% | 30.1% | 31.7% | 32.6% | 33.4% |
Pu-241 | 10.0% | 9.9% | 17.6% | 5.5% | 6.0% | 6.5% |
Pu-242 | 17.0% | 16.9% | 6.1% | 6.6% | 7.6% | 8.3% |
Pu burning rate relative | 83.9% | 87.2% | 35.9% | 11.9% | 21.8% | 28.1% |
Fuel target burnup | - | - | 50 GWd/tHM | 200 GWd/tHM | 200 GWd/tHM | 200 GWd/tHM |
Inserted Pu share | 100% | 100% | 6.54% | 18.3% | 22.4% | 26.9% |
Energy out of inserted plutonium | 821 GWd/t | 846 GWd/t | 764 GWd/t | 1093 GWd/t | 893 GWd/t | 743 GWd/t |
2.4. Consommation Accrue de Plutonium dans les Réacteurs à Neutrons Rapides/Consommation Accrue des Dechets dans les Reacteurs RApides (CAPRA/CADRA) Project Results
3. Conclusions
4. Outlook
- Reducing the waste amount since Pu is the major volumetric challenge of P&T.
- Elimination the effects of the plutonium which has been produced during LWR operation, we should burn what we have built or produced. We brought the plutonium into the world and we should be able to clear it away efficiently.
- Elimination of the risk of misuse and theft of Pu from the burnt fuel after the self-protection has disappeared. There should be a better solution than to dig it only.
- Using the large energy amount latent in the plutonium to create electricity while we clear it away.
- Without extensive multi-recycling, let’s limit the reprocessing to one cycle, avoiding the solid fuel production at all and significantly reduce the transports which are one of the most vulnerable points which can develop to a condensation point of public protests like it appeared in Germany.
- Without separation of the plutonium in the several stages of the multi-recycling, what is once put into the reactor will stay there until it is burnt.
- Without installation of a classical fast reactor park for electricity production, thus without the multi-recycling and the often cited entering into so-call plutonium economy which could lead to public protests, too.
Author Contributions
Conflicts of Interest
References
- Arkhipov, V. Future nuclear energy systems: Generating electricity, burning wastes. IAEA Bulletin, 39/2/1997, 1997. Available online: https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull39-2/39204783033.pdf (accessed on 27 February 2015).
- Oi, N. Plutonium Challenges—Changing Dimensions of Global Cooperation, IAEA Bulletin 40-1, Comparing Energy Options, 1998. Available online: http://www.iaea.org/Publications/Magazines/Bulletin/Bull401/article3.html (accessed on 26 March 2015).
- Chow, B.G. Limiting the Accumulation of Weapon-Usable Plutonium, RAND Testimony, CT-177, 1994. Available online: http://www.rand.org/content/dam/rand/pubs/.../CT117.pdf (accessed on 23 January 2015).
- Renn, O. (Hrsg.). Partitionierung und Transmutation. Forschung-Entwicklung-Gesellschaftliche Implikationen (acatech STUDIE), München: Herbert Utz Verlag 2014. Available online: http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Projekte/Laufende_Projekte/Transmutation/PuT_Studie_komplett_2013-10-22.pdf (accessed on 27 November 2014). (In German)
- Weitze, M.-D. Partitionierung und Transmutation nuklearer Abfälle. Chancen und Risiken in Forschung und Anwendung (acatech POSITION), München: Herbert Utz Verlag 2014. Available online: http://www.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/ partitionierung-und-transmutation-nuklearer-abfaelle-chancen-und-risiken-in-forschung-und-anwend.html (accessed on 6 March 2015). (In German)
- Merz, E.R. Introduction to NATO advanced research workshop. In Advanced Nuclear Systems Consuming Excess Plutonium, Proceedings of the Advanced Research Workshop on Advanced Nuclear Systems Consuming Excess Plutonium, Moscow, Russia, 13–16 October 1996; Merz, E.R., Walter, C.R., Eds.; Springer: Amsterdam, The Netherlands, 1997; Volume 15. [Google Scholar]
- Puthiyavinayagam, P. Progress in Fast Reactor Programme of India: April 2014–March 2015. In Proceedings of the 48th Annual Meeting of TWGFR, IAEA IPPE, Obninsk, Russia, 25–29 May 2015.
- Languille, A.; Gamier, J.C.; Lo Pinto, P.; Na, B.C.; Verrier, D.; Deplaix, J.; et al. CAPRA core studies. The oxide reference option. In Proceedings of the International Conference on Evaluation of Emerging Nuclear Fuel Cycle Systems, Versailles, France, 11–14 September 1995; pp. 874–881.
- Gat, U.; Engel, J.R.; Dodds, H.L. Molten Salt Reactors for Burning Dismantled Weapons Fuel, Technical Note. Nucl. Technol. 1992, 100, 390–394. [Google Scholar]
- MacPherson, H.G. The Molten Salt Reactor Adventure. Nucl. Sci. Eng. 1985, 90, 374–380. [Google Scholar]
- Engel, J.R.; Grimes, W.R.; Rhoades, W.A.; Dearing, J.F. Molten-Salt Reactors for Efficient Nuclear Fuel Utilization without Plutonium Separation, ORNL/TM-6413. August 1978. Available online: http://web.ornl.gov/info/reports/1978/3445603227167.pdf (accessed on 15 July 2015). [Google Scholar]
- Engel, J.R.; Grimes, W.R.; Rhoades, W.A.; Dearing, J.F. Molten-Salt Reactors for Efficient Nuclear Fuel Utilization without Plutonium Separation. Nucl. Technol. 1979, 46, 30–43. [Google Scholar]
- Merk, B.; Rohde, U.; Scholl, S. The Molten Salt Fast Reactor as Transmutation System. In Proceedings of the International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, 4–7 March 2013.
- Merk, B.; Rohde, U.; Glivici-Cotruta, V.; Litskevich, D.; Scholl, S. On the Molten Salt Fast Reactor for Applying an Idealized Transmutation Scenario for the Nuclear Phase Out. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, P.N. Utilization of excess Plutonium in molten salt reactors. In Advanced Nuclear Systems Consuming Excess Plutonium, Proceedings of the Advanced Research Workshop on Advanced Nuclear Systems Consuming Excess Plutonium, Moscow, Russia, 13–16 October 1996; Merz, E.R., Walter, C.R., Eds.; Springer: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Kim, T.K.; Taiwo, T.A.; Wigeland, R.A.; Dixon, B.W.; Gehin, J.C.; Todosow, M. Mass Flow Data Comparison for Comprehensive Fuel Cycle Options. In Proceedings of the Actinide and Fission Product Partitioning and Transmutation Thirteenth Information Exchange Meeting, Seoul, Korea, 23–26 September 2014.
- Renault, C.; Delpech, M. MOST Final Report; EURATOM Contract Number FIKI-CT-2001-20183; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- Mathieu, L.; Heuer, D.; Billebaud, A.; Brissot, R.; Garzenne, C.; Le Brun, C.; Lecarpentier, D.; Liatard, E.; Loiseaux, J.-M.; Meplan, O.; et al. Proposal for a Simplified Thorium Molten Salt Reactor. In Proceedings of GLOBAL 2005, Tsukuba, Japan, 9–13 October 2005; pp. 9–13.
- EVOL—Evaluation and Viability of Liquid Fuel Fast Reactor System. Available online: http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_LANG=EN&PJ_RCN=11669355&pid=5 (accessed on 18 October 2012).
- Renault, C.; Guérard, C. The Molten Salt Reactor (MSR). GIF System Development Progress Status. In Proceedings of the 4th INPRO-GIF Interface Meeting, Vienna, Austria, 1–3 March 2010.
- Merle-Lucotte, E.; Heuer, D.; Allibert, M.; Brovchenko, M.; Capellan, N.; Ghetta, V. Launching the thorium cycle with molten salt reactor. In Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP 2011), Nice, France, 2–5 May 2011.
- Ingatiev, V.; Feynberg, O.; Merzlyakov, A.; Surenkov, A.; Zagnitko, A.; Afonichkin, V.; Bovet, A.; Khokhlov, V.; Subbotin, V.; Fazilov, R.; et al. Progress in Development of MOSART Concept with Th Support. In Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP’12), Chicago, IL, USA, 24–28 June 2012.
- Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Merzlyakov, A.; Smirnov, V.; Surenkov, A.; Tretiakov, I.; Zakirov, R. Progress in Development of Li, Be, Na/F Molten Salt Actinide Recycler & Transmuter Concept. In Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP) 2007, Nice, France, 13–18 May 2007.
- Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Merzlyakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A.; Subbotin, V.; Sannikov, I.; Toropov, A.; et al. Molten salt actinide recycler and transforming system without and with Th-U support: Fuel cycle flexibility and key material properties. Ann. Nucl. Energy 2014, 64, 408–420. [Google Scholar] [CrossRef]
- Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Konakov, S.; Kormilitsyn, M.; Merzliakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A. MARS: Story on Molten Salt Actinide Recycler and Transmuter Development by Rosatom in Co-operation with Euratom. In Proceedings of the Actinide and Fission Product Partitioning and Transmutation Thirteenth Information Exchange Meeting, Seoul, Korea, 23–26 September 2014.
- The raw data of the calculations and the used PYTHON script are stored at the HZDR library. Available online: https://www.hzdr.de/db/!FzrTools.Archiving.ArchiveInfos?pNid=223&pId=1548 (accessed on 15 July 2015).
- Brovchenko, M.; Merle-Lucotte, E.; Rouch, H.; Alcaro, F.; Aufiero, M.; Cammi, A.; Dulla, S.; Feynberg, O.; Firma, L.; Geoffroy, O.; et al. Evaluation and Viability of Liquid Fuel Fast Reactor System EVOL, Optimization of the pre-conceptual design of the MSFR, DELIVERABLE D 2.2. Available online: http://www.janleenkloosterman.nl/reports/evol_d22_201309.pdf (accessed on 30 October 2015).
- Wemple, C.A.; Simeonow, T.; Rhodes, J.D., III. HELIOS-2 Methods Version 2.1; SSP-11/452 Rev 1, Studsvik Scandpower, Inc.: Idaho Falls, ID, USA, 16 December 2011. [Google Scholar]
- Merk, B.; Litskevich, D. Transmutation of all German Transuranium under Nuclear Phase out conditions—Is this Feasible from Neutronic Point of View? PLoS One. under review.
- IAEA Fast Reactor Database—2006 Update. IAEA TECDOC 1531. Available online: http://www-pub.iaea.org/books/IAEABooks/7581/Fast-Reactor-Database-2006-Update (accessed on 27 October 2015).
- Waltar, A.E.; Reynolds, A.B. Fast Breeder Reactors; Pergamon Press: New York, NY, USA, 1981. [Google Scholar]
- Pay, A.; Francillon, E.; Steinmetz, B.; Barnes, D.; Meda, N. European Fast Reactor (EFR) Fuel Element Design. In Proceedings of the 10th International Conference on Structural Mechanics in Reactor Technology, Anaheim, CA, USA, 14–18 August 1989.
- Salvatores, M.; Delpech, M. Advanced systems for Plutonium utilization, published in Advanced nuclear systems consuming excess plutonium. In Advanced Nuclear Systems Consuming Excess Plutonium, Proceedings of the Advanced Research Workshop on Advanced Nuclear Systems Consuming Excess Plutonium, Moscow, Russia, 13–16 October 1996; Merz, E.R., Walter, C.R., Eds.; Springer: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Kozlowski, T.; Downar, T.J. OECD/NEA AND U.S. NRC PWR MOX/UO2 CORE TRANSIENT BENCHMARK, OECD Nuclear Energy Agency Nuclear Science Committee, Final Specifications, Revision 2 December 2003. Available online: https://www.oecd-nea.org/science/wprs/MOX-UOX-transients/ (accessed on 27 October 2015).
- Villarino, E.A.; Stammler, R.J.J.; Ferri, A.; Casal, J.J. HELIOS: Angularly dependent collision probabilities. Nucl. Sci. Eng. 1992, 112, 16–31. [Google Scholar]
- Rachamin, R.; Wemple, C.; Fridman, E. Neutronic analysis of SFR core with HELIOS-2, Serpent, and DYN3D codes. Ann. Nucl. Energy 2013, 55, 194–204. [Google Scholar] [CrossRef]
- Brovchenko, M. Neutronic Benchmark of the Molten Salt Fast Reactor in the Frame of the EVOL and MARS Collaborative Projects. Prog. Nucl. Energy. under review. [CrossRef]
- Mikityuk, K. Core Safety (ESNII + WP6). In Proceedings of the European Nuclear Gen II, III, IV Days, Brussels, Belgium, 17–19 March 2015.
- Merk, B.; Stanculescu, A.; Chellapandi, P.; Hill, R. Progress in reliability of fast reactor operation and new trends to increased inherent safety. Appl. Energy 2015, 147. [Google Scholar] [CrossRef]
- Rouault, J.; Garnier, J. C.; Languille, A.; Lo Pinto, P. The design of U-free large fast reactor cores. The CAPRA programme trends PHYSOR 96: Breakthrough of Nuclear Energy by Reactor Physics. In Proceedings of the International Conference on the Physics of Reactors, Mito, Japan, 16–20 September 1996.
- Broeders, C.H.M.; Broeders, I.; Kessler, G.; Kiefhaber, E. Recent Neutron Physics Investigations on the Incineration of Plutonium and Other Transurania Isotopes. In Advanced Nuclear Systems Consuming Excess Plutonium, Proceedings of the Advanced Research Workshop on Advanced Nuclear Systems Consuming Excess Plutonium, Moscow, Russia, 13–16 October 1996; Merz, E.R., Walter, C.R., Eds.; Springer: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Wiese, H.W. Actinide transmutation properties of thermal and fast fission reactors including multiple recycling. J. Alloys Compd. 1998, 271–273, 522–529. [Google Scholar] [CrossRef]
- Vasile, A.; Vambenepe, G.; Lefèvre, J.C.; Hesketh, K.; Mashek, W.; De Raedt, C.; Haas, D. The CAPRA—CADRA programme, ICONE 8. In Proceedings of the 8th International Conference on Nuclear Engineering, Baltimore, MD, USA, 2–6 April 2000.
- Status and Trends of Nuclear Technologies. Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Available online: http://www-pub.iaea.org/MTCD/publications/PDF/TE_1622_Web.pdf (accessed on 15 October 2015).
- Global Nuclear Energy Partnership Technology Demonstration Program Dave Hill. Available online: http://www.mcs.anl.gov/events/workshops/nprcsafc/Presentations/NucPhysConf.pdf (accessed on 15 October 2015).
- Knebel, J.; Eurotrans, I.P. A European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System. Available online: https//www.oecd-nea.org/pt/docs/iem/lasvegas04/11_Session_V/S5_01.pdf (accessed on 15 October 2015).
- PRISM: Technology to Power and Secure our Energy Future. Available online: http://gehitachiprism.com/ (accessed on 15 October 2015).
- Yamashita, J.; Kawamura, F.; Mochida, T. Next-generation Nuclear Reactor Systems for Future Energy. Available online: http://www.hitachi.com/rev/pdf/2004/r2004_03_105.pdf (accessed on 15 October 2015).
- Takeda, R.; Aoyama, M.; Moriwaki, M.; Uchikawa, S.; Yokomizo, O.; Ochiai, K. General Features of Resource-Renewable BWR (RBWR) and Scenario of Long-term Energy Supply. In Proceedings of the International Conference on Evaluation of Emerging Nuclear Fuel Cycle Systems (GLOBAL95), Versailles, France, 11–14 September 1995.
- Kessler, G.; Kim, J.I.; Gompper, K. Wohin mit dem deutschen Plutonium. Int. Z. Kernenerg. 1999, 44, 156–164. (In German) [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merk, B.; Litskevich, D. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study. Energies 2015, 8, 12557-12572. https://doi.org/10.3390/en81112328
Merk B, Litskevich D. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study. Energies. 2015; 8(11):12557-12572. https://doi.org/10.3390/en81112328
Chicago/Turabian StyleMerk, Bruno, and Dzianis Litskevich. 2015. "On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study" Energies 8, no. 11: 12557-12572. https://doi.org/10.3390/en81112328
APA StyleMerk, B., & Litskevich, D. (2015). On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study. Energies, 8(11), 12557-12572. https://doi.org/10.3390/en81112328