Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes
Abstract
:1. Introduction
Fruit | Fruit Flavor | References | |
---|---|---|---|
Flavor compound | Flavor group | ||
Orange | Hexanal and nonanal | Aldehydes | [10] |
Octanol, 3-methyl butanol | Alcohols | [10,23] | |
α-pinene, car-3-ene, myrcene and limonene | Terpenoid | [10,11] | |
Banana | Pentanone, heptanone, undecanone | Ketones | [12,13] |
Butanal, hexanal and E-2-hexanal | Aldehydes | [12,13] | |
1-butanol, 2-pentanol, 3-methyl-1-butanol, 1-hexanol and eugenol | Alcohol | [12,13] | |
Ethyl acetate, butyl acetate, 2-methyl propyl acetate, hexyl acetate, hexyl butanoate and butyl butanoate | Esters | [12,13] | |
Apple | n-Hexanal, E-2-hexenal, nonanal, acetaldehyde | Aldehydes | [10,14] |
Hexanol and butanol | Alcohols | [14] | |
Car-3-ene | Terpenoid | [10] | |
Ethyl butanoate, ethyl -2-methylbutanoate, hexyl acetate, etc. | Ester | [14,15,23] | |
Epicatechin | Polyphenol | [16,17] | |
Grape | Hexanal | Aldehyde | [10] |
Octanol and hexanol | Alcohols | [14,18] | |
Hexyl acetate, ethyl acetate and ethyl hexanoate | Esters | [10,18,19] | |
Quercetin and epicatechin | Polyphenol | [16] | |
Melon | Nonanal, benzaldehyde and E-2-nonenal | Aldehydes | [20,21,22] |
Ethyl 2-methyl propyl acetate and 2-methyl butyl acetate | Esters | [20,21,22] |
2. Results and Discussion
2.1. Hydrogen Production Yields from Singly-Digested Fruits
2.2. Hydrogen Production Yields from Mixed Fruits
2.3. VFAs Production
2.4. Comparison of Hydrogen Yields and Acetic Acid Productions with Theoretical Values
2.4.1. Relative Yield of Hydrogen Production
Parameter | Average hydrogen yields | Average acetic acid production | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Period (d) | 1–15 | 16–30 | 31–47 | 1–15 | 16–30 | 31–47 | ||||||
HRT (d) | 8.6 | 5.0 | 3.0 | 8.6 | 5.0 | 3.0 | ||||||
Fruit | AY (mL/gVS) | RY (%) | AY (mL/gVS) | RY (%) | AY (mL/gVS) | RY (%) | AY (g/L) | RY (%) | AY (g/L) | RY (%) | AY (g/L) | RY (%) |
Orange | 279 | 16.1 | 403 | 23.3 | 204 | 11.8 | 0.37 | 55 | 0.71 | 118 | 1.21 | 181 |
Banana | 389 | 22.7 | 403 | 23.5 | 268 | 15.7 | 0.62 | 93 | 1.05 | 157 | 1.04 | 155 |
Apple | 493 | 28.9 | 635 | 37.3 | 440 | 25.8 | 0.73 | 109 | 0.91 | 136 | 1.30 | 194 |
Grape | 347 | 20.5 | 384 | 22.6 | 182 | 10.7 | 0.75 | 112 | 0.71 | 106 | 1.07 | 160 |
Melon | 216 | 12.6 | 352 | 20.5 | 347 | 20.2 | 0.48 | 72 | 0.37 | 55 | 0.86 | 128 |
Mix 1 | 268 | 15.5 | 456 | 26.4 | 271 | 15.7 | 0.56 | 84 | 1.03 | 154 | 1.20 | 179 |
Mix 2 | 270 | 15.7 | 479 | 28.0 | 377 | 22.0 | 0.74 | 110 | 1.03 | 154 | 1.18 | 176 |
Mix 3 | 523 | 30.5 | 553 | 32.3 | 491 | 28.6 | 1.05 | 157 | 1.15 | 172 | 1.62 | 242 |
2.4.2. Relative Yield of Volatile Fatty Acids
2.5. Significant Effects of Varying Hydraulic Retention Times, Fruit Mixing and Their Interaction on Hydrogen Yield and Acetic Acid Production
Response | Factor | Factor Type | Factor Levels | Factor Values | dF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|---|---|
Hydrogen yield | HRT | Fixed | 3 | 3.0; 5.0; 8.6 | 2 | 3,8951 | 3.28 | 3.28 | 0.061 |
Mix | Fixed | 2 | N; Y | 1 | 16,187 | 1.36 | 1.36 | 0.259 | |
HRT and mix interaction | 2 | 3,266 | 0.27 | 0.27 | 0.763 | ||||
Error | 18 | 11,890 | |||||||
Total | 23 | ||||||||
Acetic acid production | HRT | Fixed | 3 | 3.0; 5.0: 8.6 | 2 | 1.05371 | 0.526854 | 12.82 | 0.000 |
Mix | Fixed | 2 | N, Y | 1 | 0.35219 | 0.352188 | 8.57 | 0.009 | |
HRT and mix interaction | 2 | 0.01551 | 0.007754 | 0.19 | 0.830 | ||||
Error | 18 | 0.73985 | 0.041103 | ||||||
Total | 23 |
Response | Factor | Difference of factor levels | Difference of means | SE of difference | Simultaneous 95% CI | t-value | Adjusted p-value |
---|---|---|---|---|---|---|---|
H2 yield | HRT | 5.0–3.0 | 131.8 | 56.3 | (−12.0; 275.5) | 2.34 | 0.076 |
8.6–3.0 | 15.3 | 56.3 | (−128.4; 159.0) | 0.27 | 0.960 | ||
8.6–5.0 | −116.5 | 56.3 | (−260.2; 27.3) | −2.07 | 0.125 | ||
Mix | YES–NO | 53.6 | 46.0 | (−42.9; 150.2) | 1.17 | 0.259 | |
Mix and HRT interaction | (NO 5.0)–(NO 3.0) | 147.2 | 69.0 | (−71.8; 366.2) | 2.13 | 0.314 | |
(NO 8.6)–(NO 3.0) | 56.6 | 69.0 | (−162.4; 275.6) | 0.82 | 0.960 | ||
(YES 3.0)–(NO 3.0) | 91.5 | 79.6 | (−161.4; 344.3) | 1.15 | 0.855 | ||
(YES 5.0)–(NO 3.0) | 207.8 | 79.6 | (−45.0; 460.6) | 2.61 | 0.145 | ||
(YES 8.6)–(NO 3.0) | 65.5 | 79.6 | (−187.4; 318.3) | 0.82 | 0.960 | ||
(NO 8.6)–(NO 5.0) | −90.6 | 69.0 | (−309.6; 128.4) | −1.31 | 0.774 | ||
(YES 3.0)–(NO 5.0) | −55.7 | 79.6 | (−308.6; 197.1) | −0.70 | 0.980 | ||
(YES 5.0)–(NO 5.0) | 60.6 | 79.6 | (−192.2; 313.4) | 0.76 | 0.971 | ||
(YES 8.6)–(NO 5.0) | −81.7 | 79.6 | (−334.6; 171.1) | −1.03 | 0.903 | ||
(YES 3.0)–(NO 8.6) | 34.9 | 79.6 | (−218.0; 287.7) | 0.44 | 0.998 | ||
(YES 5.0)–(NO 8.6) | 151.2 | 79.6 | (−101.6; 404.0) | 1.90 | 0.434 | ||
(YES 8.6)–(NO 8.6) | 8.9 | 79.6 | (−244.0; 261.7) | 0.11 | 1.000 | ||
(YES 5.0)–(YES 3.0) | 116.3 | 89.0 | (−166.3; 399.0) | 1.31 | 0.778 | ||
(YES 8.6)–(YES 3.0) | −26.0 | 89.0 | (−308.7; 256.7) | −0.29 | 1.000 | ||
(YES 8.6)–(YES 5.0) | −142.3 | 89.0 | (−425.0; 140.3) | −1.60 | 0.610 | ||
Acetic acid | HRT | 5.0–3.0 | −0.305 | 0.105 | (−0.572; −0.037) | −2.91 | 0.024 |
8.6–3.0 | −0.528 | 0.105 | (−0.795; −0.261) | −5.04 | 0.000 | ||
8.6–5.0 | −0.223 | 0.105 | (−0.491; 0.044) | −2.13 | 0.111 | ||
Mix | YES–NO | 0.2502 | 0.0855 | (0.0706; 0.4298) | 2.93 | 0.124 | |
Mix and HRT interaction | (NO 5.0)–(NO 3.0) | −0.346 | 0.128 | (−0.753; 0.061) | −2.70 | 0.124 | |
(NO 8.6)–(NO 3.0) | −0.506 | 0.128 | (−0.913; −0.099) | −3.95 | 0.010 | ||
(YES 3.0)–(NO 3.0) | 0.237 | 0.148 | (−0.233; 0.707) | 1.60 | 0.607 | ||
(YES 5.0)–(NO 3.0) | −0.026 | 0.148 | (−0.496; 0.444) | −0.18 | 1.000 | ||
(YES 8.6)–(NO 3.0) | −0.313 | 0.148 | (−0.783; 0.157) | −2.11 | 0.325 | ||
(NO 8.6)–(NO 5.0) | −0.160 | 0.128 | (−0.567; 0.247) | −1.25 | 0.808 | ||
(YES 3.0)–(NO 5.0) | 0.583 | 0.148 | (0.113; 1.053) | 3.94 | 0.010 | ||
(YES 5.0)–(NO 5.0) | 0.320 | 0.148 | (−0.150; 0.790) | 2.16 | 0.302 | ||
(YES 8.6)–(NO 5.0) | 0.033 | 0.148 | (−0.437; 0.503) | 0.23 | 1.000 | ||
(YES 3.0)–(NO 8.6) | 0.743 | 0.148 | (0.273; 1.213) | 5.02 | 0.001 | ||
(YES 5.0)–(NO 8.6) | 0.480 | 0.148 | (0.010; 0.950) | 3.24 | 0.044 | ||
(YES 8.6)–(NO 8.6) | 0.193 | 0.148 | (−0.227; 0.663) | 1.31 | 0.778 | ||
(YES 5.0)–(YES 3.0) | −0.263 | 0.166 | (−0.789; 0.262) | −1.59 | 0.614 | ||
(YES 8.6)–(YES 3.0) | −0.550 | 0.166 | (−1.076; −0.024) | −3.32 | 0.037 | ||
(YES 8.6)–(YES 5.0) | −0.287 | 0.166 | (−0.812; 0.239) | −1.73 | 0.530 |
Response | Factor | Factor Type | Factor Levels | Factor Values | dF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|---|---|
Hydrogen yield | HRT | Fixed | 3 | 3.0; 5.0; 8.6 | 2 | 83,069 | 41,534 | 11.52 | 0.001 |
Substrate | Fixed | 8 | Apple; Banana; Grape; Melon; Mix1; Mix 2; Mix 3; Orange | 7 | 186,264 | 26,609 | 7.38 | 0.001 | |
Error | 14 | 50,472 | 3,605 | ||||||
Total | 23 | 319,805 | |||||||
Acetic acid production | HRT | Fixed | 3 | 3.0; 5.0; 8.6 | 2 | 1.1074 | 0.55372 | 30.39 | 0.000 |
Mix | Fixed | 8 | Apple; Banana; Grape; Melon; Mix1; Mix 2; Mix 3; Orange | 7 | 0.8524 | 0.12178 | 6.68 | 0.001 | |
Error | 14 | 0.2551 | 0.01822 | ||||||
Total | 23 |
Response | Factor | Difference of Factor Levels | Difference of Means | SE of Difference | Simultaneous 95% CI | t-Value | Adjusted p-Value |
---|---|---|---|---|---|---|---|
H2 yield | HRT | 5.0–3.0 | 135.6 | 30.0 | (57.1; 214.2) | 4.52 | 0.001 |
8.6–3.0 | 25.6 | 30.0 | (−52.9; 104.2) | 0.85 | 0.677 | ||
8.6–5.0 | −110.0 | 30.0 | (−188.5; −31.5) | −3.66 | 0.007 | ||
Substrate | Banana-Apple | −169.3 | 49.0 | (−342.3; 3.6) | −3.45 | 0.057 | |
Grape-apple | −218.3 | 49.0 | (−391.3; −45.4) | −4.45 | 0.010 | ||
Melon-Apple | −217.7 | 49.0 | (−390.6; −44.7) | −4.44 | 0.010 | ||
Mix 1-Apple | −191.0 | 49.0 | (−364.0; −18.0) | −3.90 | 0.026 | ||
Mix 2-Apple | −147.3 | 49.0 | (−320.3; 25.6) | −3.01 | 0.123 | ||
Mix 3-Apple | −0.3 | 49.0 | (−173.3; 172.6) | −0.01 | 1.000 | ||
Orange-Apple | −227.3 | 49.0 | (−400.3; −54.4) | −4.64 | 0.007 | ||
Grape-Banana | −49.0 | 49.0 | (−222.0; 124.6) | −1.00 | 0.967 | ||
Melon-Banana | −48.3 | 49.0 | (−221.3; 124.6) | −0.99 | 0.969 | ||
Mix 1-Banana | −21.7 | 49.0 | (−194.6; 151.3) | −0.44 | 1.000 | ||
Mix 2-Banana | 22.0 | 49.0 | (−151.0; 195.0) | 0.45 | 1.000 | ||
Mix 3-Banana | 169.0 | 49.0 | (−4.0; 342.0) | 3.45 | 0.058 | ||
Orange-Banana | −58.0 | 49.0 | (−231.0; 115.0) | −1.18 | 0.924 | ||
Melon-Grape | 0.7 | 49.0 | (−172.3; 173.6) | 0.01 | 1.000 | ||
Mix 1-Grape | 27.3 | 49.0 | (−145.6; 200.3) | 0.56 | 0.999 | ||
Mix 2-Grape | 71.0 | 49.0 | (−102.0; 244.0) | 1.45 | 0.821 | ||
Mix 3-Grape | 218.0 | 49.0 | (45.0; 391.0) | 4.45 | 0.010 | ||
Orange− Grape | −9.0 | 49.0 | (−182.0; 164.0) | −0.18 | 1.000 | ||
Mix 1-Melon | 26.7 | 49.0 | (−146.3; 199.6) | 0.54 | 0.999 | ||
Mix 2-Melon | 70.3 | 49.0 | (−102.6; 243.3) | 1.43 | 0.827 | ||
Mix 3-Melon | 217.3 | 49.0 | (44.4; 390.3) | 4.43 | 0.010 | ||
Orange-Melon | −9.7 | 49.0 | (−182.6; 163.3) | −0.20 | 1.000 | ||
Mix 2-Mix 1 | 43.7 | 49.0 | (−129.3; 216.6) | 0.89 | 0.982 | ||
Mix 3-Mix 1 | 190.7 | 49.0 | (17.7; 363.6) | 3.89 | 0.026 | ||
Orange-Mix 1 | −36.3 | 49.0 | (−209.3; 136.6) | −0.74 | 0.994 | ||
Mix 3-Mix 2 | 147.0 | 49.0 | (−26.0; 320.0) | 3.00 | 0.124 | ||
Orange-Mix 2 | −80.0 | 49.0 | (−253.0; 93.0) | −1.63 | 0.726 | ||
Orange-Mix 3 | −227.0 | 49.0 | (−400.0; −54.0) | −4.63 | 0.007 | ||
Acetic acid | HRT | 5.0–3.0 | −0.3150 | 0.0675 | (−0.4916; −0.1384) | −4.67 | 0.001 |
8.6–3.0 | −0.5225 | 0.0675 | (−0.6991; −0.3459) | −7.74 | 0.002 | ||
8.6–5.0 | −0.2075 | 0.0675 | (−0.3841; −0.0309) | −3.07 | 0.021 | ||
Substrate | Banana-Apple | −0.077 | 0.110 | (−0.466; 0.312) | −0.70 | 0.996 | |
Grape-apple | −0.137 | 0.110 | (−0.526; 0.252) | −1.24 | 0.906 | ||
Melon-Apple | −0.410 | 0.110 | (−0.799; −0.021) | −3.72 | 0.036 | ||
Mix 1-Apple | −0.050 | 0.110 | (−0.439; 0.339) | −0.45 | 1.000 | ||
Mix 2-Apple | 0.003 | 0.110 | (−0.386; 0.392) | 0.03 | 1.000 | ||
Mix 3-Apple | 0.293 | 0.110 | (−0.096; 0.682) | 2.66 | 0.213 | ||
Orange-Apple | −0.217 | 0.110 | (−0.606; 0.172) | −1.97 | 0.534 | ||
Grape-Banana | −0.060 | 0.110 | (−0.449; 0.329) | −0.54 | 0.999 | ||
Melon-Banana | −0.333 | 0.110 | (−0.722; 0.056) | −3.02 | 0.119 | ||
Mix 1-Banana | 0.027 | 0.110 | (−0.362; 0.416) | 0.24 | 1.000 | ||
Mix 2-Banana | 0.080 | 0.110 | (−0.309; 0.469) | 0.73 | 0.995 | ||
Mix 3-Banana | 0.370 | 0.110 | (−0.019; 0.759) | 3.36 | 0.068 | ||
Orange-Banana | −0.140 | 0.110 | (−0.529; 0.249) | −1.27 | 0.896 | ||
Melon-Grape | −0.273 | 0.110 | (−0.662; 0.116) | −2.48 | 0.278 | ||
Mix 1-Grape | 0.087 | 0.110 | (−0.302; 0.476) | 0.79 | 0.991 | ||
Mix 2-Grape | 0.140 | 0.110 | (−0.249; 0.529) | 1.27 | 0.896 | ||
Mix 3-Grape | 0.430 | 0.110 | (0.041; 0.819) | 3.90 | 0.026 | ||
Orange− Grape | −0.080 | 0.110 | (−0.469; 0.309) | −0.73 | 0.995 | ||
Mix 1-Melon | 0.360 | 0.110 | (−0.029; 0.749) | 3.27 | 0.079 | ||
Mix 2-Melon | 0.413 | 0.110 | (0.024; 0.802) | 3.75 | 0.034 | ||
Mix 3-Melon | 0.703 | 0.110 | (0.314; 1.092) | 6.38 | 0.000 | ||
Orange-Melon | 0.193 | 0.110 | (−0.196; 0.582) | 1.75 | 0.657 | ||
Mix 2-Mix 1 | 0.053 | 0.110 | (−0.336; 0.422) | 0.48 | 1.000 | ||
Mix 3-Mix 1 | 0.343 | 0.110 | (−0.046; 0.732) | 3.12 | 0.102 | ||
Orange-Mix 1 | −0.167 | 0.110 | (−0.556; 0.222) | −1.51 | 0.790 | ||
Mix 3-Mix 2 | 0.290 | 0.110 | (−0.099; 0.679) | 2.63 | 0.223 | ||
Orange-Mix 2 | −0.220 | 0.110 | (−0.609; 0.169) | −2.00 | 0.516 | ||
Orange-Mix 3 | −0.510 | 0.110 | (−0.899; −0.121) | −4.63 | 0.007 |
3. Experimental Section
3.1. Experimental Materials (Feedstock, Seed Sludge and Nutrient)
3.2. Experimental Setup and Procedures
3.3. Analytical Procedures
Parameters | Apple | Banana | Grape | Melon | Orange |
---|---|---|---|---|---|
TS (%) | 11.72 ± 0.02 | 16.36 ± 0.24 | 19.32 ± 0.24 | 8.93 ± 0.26 | 16.85 ± 0.30 |
VS (%) | 11.53 ± 0.35 | 15.5 ± 0.05 | 18.68 ± 0.06 | 8.39 ± 0.16 | 16.26 ± 0.20 |
pH | 3.90 ± 0.01 | 5.06 ± 0.02 | 3.67 ± 0.02 | 4.88 ± 0.01 | 4.04 ± 0.02 |
Fruit | Carbohydrate | Protein | Lipid | C:N Ratio * | |||
---|---|---|---|---|---|---|---|
g | % | g | % | g | % | ||
Apple | 14.06 | 97 | 0.27 | 2 | 0.20 | 1 | 52:1 |
Melon | 9.09 | 93 | 0.54 | 6 | 0.14 | 1 | 17:1 |
Banana | 22.84 | 94 | 1.09 | 5 | 0.33 | 1 | 21:1 |
Orange | 15.50 | 90 | 1.30 | 8 | 0.30 | 2 | 12:1 |
Grape | 18.10 | 95 | 0.72 | 4 | 0.16 | 1 | 25:1 |
Mix 1 * | 15.71 | 92 | 1.10 | 6 | 0.28 | 2 | 14:1 |
Mix 2 * | 15.77 | 95 | 0.59 | 3 | 0.26 | 2 | 27:1 |
Mix 3 * | 15.92 | 94 | 0.78 | 5 | 0.23 | 1 | 20:1 |
4. Conclusions
Acknowledgments
Acronyms
AY | Actual yield |
CIs | Confidence intervals |
COD | Chemical oxygen demand |
dF | degree of freedom |
HPM | Hydrogen producing microorganism |
HRT | Hydraulic retention time |
MS | Mean square |
Mix | Mixing |
Mix 1 | 70% orange mixed fruit |
Mix 2 | 50% orange mixed fruit |
Mix 3 | 20% orange mixed fruit |
OLR | Organic loading rate |
PY | Percent yield |
SS | Sum of squares |
SV | Source of variation |
TS | Total solid |
TVFA | Total volatile fatty acids |
VFA | Volatile fatty acids |
VS | Volatile solid |
Conflicts of Interest
References
- Benemann, J. Hydrogen biotechnology: Progress and prospects. Nat. Biotechnol. 1996, 14, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Bockris, J.O.M. The economics of hydrogen as a fuel. Int. J. Hydrog. Energy 1981, 6, 223–241. [Google Scholar] [CrossRef]
- Mormirlan, M.; Veziroglu, T.N. Current status of hydrogen energy. Renew. Sustain. Energy Rev. 2002, 6, 141–179. [Google Scholar] [CrossRef]
- Ros, M.; Franke-Whittle, I.H.; Morales, A.B.; Insam, H.; Ayuso, M.; Pascual, J.A. Archael community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste. Bioresour. Technol. 2013, 136, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Haruta, S.; Ishii, M.; Igarashi, Y. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 2001, 57, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Kapdan, I.K.; Kargi, F. Biohydrogen production from waste materialk. Enzyme Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Levin, D.B.; Chahine, R. Challenges for renewable hydrogen production processes. Int. J. Hydrog. Energy 2008, 33, 279–286. [Google Scholar] [CrossRef]
- Westermann, P.; Jørgensen, B.; Lange, L.; Ahring, B.K.; Christensen, C.H. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery. Int. J. Hydrog. Energy 2007, 32, 4135–4141. [Google Scholar] [CrossRef]
- Nandi, R.; Sengupta, S. Microbial production of hydrogen: An Overview. Crit. Rev. Microbiol. 1998, 24, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Nursten, H.E.; Williams, A.A. Fruit aromas: A survey of compounds identified. Chem. Ind. 1967, 486–497. [Google Scholar]
- Winniczuk, P.P.; Parish, M.E. Minimum inhibitory concentrations of antimicrobials against micro-organisms related to citrus juice. Food Microbiol. 1997, 14, 373–381. [Google Scholar]
- Jordan, M.J.; Tandon, K.; Shaw, P.E.; Goodner, K.I. Aromatic profile aqueous banana essence and banana fruit by gas-chromatography-mass spectrometry (GC-MS) and gas-chromatography-olfactometry. J. Agric. Food Chem. 2001, 49, 4813–4817. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.M.F.; Fernandes, P.J.P.; Nascimento, A.M.D.C. Composition of volatiles of banana cultivars from Madeira island. Phytochem. Anal. 2003, 14, 82–90. [Google Scholar] [CrossRef]
- Rizzolo, J.; Polesello, A.; Teleky-Vamossy, G. CGC/Sensory analysis of volatile compounds developed from ripening apple fruit. J. High Resolut. Chrom. 1989, 12, 824–827. [Google Scholar] [CrossRef]
- Holland, D.; Larkov, O.; Bar-Yaákov, I.; Bar, E.; Zax, A.; Brandeis, E. Developmental and varietal differences in volatile ester formation and acetyl-CoA: Alcohol acetyl transferase activities in apple (Malus domestica Borkh.) fruit. J. Agric. Food Chem. 2005, 53, 7198–7203. [Google Scholar] [CrossRef] [PubMed]
- Tsanova-Savova, S.; Fany, R.; Maria, G. (+)- Catechin and (-) Epicatechin in Bulgarian Fruits. J. Food Comp. Anal. 2005, 18, 691–698. [Google Scholar] [CrossRef]
- Schieber, A.; Petra, K.; Reinhold, C. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J. Chromatogr. 2000, 910, 265–273. [Google Scholar] [CrossRef]
- Dieguez, S.C.; Lois, L.C.; Gomez, E.F.; de Ia Pena, M.L.G. Aromatic composition of the Vitis vinifera grape Albariño. Lebensm. Wiss. Und. Technol. 2003, 36, 585–590. [Google Scholar] [CrossRef]
- Aubert, C.; Baumann, S.; Arguel, H. Optimisation of the analysis of flavour volatile compounds by liquid-liquid microextraction (LLME). Apllication to the aroma analysis of melons, peaches, grapes, strawberries, and tomatoes. J. Agric. Food Chem. 2005, 53, 8881–8895. [Google Scholar] [CrossRef] [PubMed]
- Perry, P.L.; Wang, Y.; Lin, J.M. Analysis of honeydew melon (Cucumis melo var. Inodorus) flavor and GC/MS identification of (E,Z)-2,6-nonadienyl acetate. Flav. Frag. J. 2009, 24, 341–347. [Google Scholar] [CrossRef]
- Portnoy, V.; Benyamini, Y.; Bar, E. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol. Biol. 2008, 66, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Aubert, C.; Pitrat, M. Volatile compounds in the skin and pulp of Queen Anne’s pocket melon. J. Agric. Food Chem. 2006, 54, 8177–8182. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.H. Handbook of Fruit and Vegetable Flavours; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Utama, I.; Made, S.; Wills, R.B.H.; Ben-yehoshua, S.; Kuek, C. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 2002, 50, 6371–6377. [Google Scholar] [CrossRef]
- Grohmann, K.; Baldwin, E.; Buslig, B. Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 1994, 45–46, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Mizuki, E.; Akao, T.; Saruwatari, T. Inhibitory effect of citrus Unshu peel om anaerobic digestion. Biol. Wastes 1990, 33, 161–168. [Google Scholar] [CrossRef]
- Martin, M.A.; Siles, J.A.; China, A.F.; Martin, A. Biomethanization of orange peel waste. Bioresour. Technol. 2010, 101, 8993–8999. [Google Scholar] [CrossRef] [PubMed]
- Youngsukkasem, S.; Akinbomi, J.; Rakshit, S.; Taherzadeh, M.J. Biogas production by encased bacteria in synthetic membranes: Protective effects in toxic media and high loading rates. Environ. Technol. 2013, 34, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Wikandari, R.; Youngsukkasem, S.; Millati, R.; Taherzadeh, M.J. Performance of semi-continuous membrane bioreactors in biogas production from toxic feedstock containing D-limonene. Bioresour. Technol. 2014, 170, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, R.; el-Mashad, H.M.; Sun, H.; Yimg, Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrog. Energy 2008, 33, 6968–6975. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, R.J.; Angelidaki, I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 2006, 40, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Han, S.K.; Shin, H.S. Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem. 2008, 43, 213–218. [Google Scholar] [CrossRef]
- Chu, C.F.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int. J. Hydrog. Energy 2012, 37, 10611–10618. [Google Scholar] [CrossRef]
- Lin, C.; Lay, C. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrog. Energy 2005, 30, 285–292. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 2011, 35, 992–998. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. Production of methane from sugar beet sludge without manure addition by a single stage anaerobic digestion process. Biomass Bioenergy 2008, 32, 203–209. [Google Scholar] [CrossRef]
- Pobeheim, H.; Munk, B.; Johansson, J.; Guebitz, G.M. Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresour. Technol. 2010, 101, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Microbiol.Mol. Biol. Rev. 1977, 41, 100–180. [Google Scholar]
- Dohanyos, M.; Kosova, B.; Zabranska, J.; Grau, P. Production and utilization of volatile fatty acids in various types of anaerobic reactors. Water Sci. Technol. 1985, 17, 191–205. [Google Scholar]
- Vardar, S.G.; Maeda, T.; Wood, T.K. Metabolically engineered bacteria for producing hydrogen via fermentation. Microb. Biotechnol. 2008, 1, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Thauer, R.K. Limitation of microbial H2-formation via fermentation. In Microbial Energy Conversion; Schlegel, H.G., Barnea, J., Eds.; Pergamon Press: New York, NY, USA, 1977. [Google Scholar]
- Hawkes, F.R.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawkes, D.L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrog. Energy 2007, 32, 172–184. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Dinsdale, R.; Hawkes, D.L.; Hussy, I. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int. J. Hydrog. Energy 2002, 27, 1339–1347. [Google Scholar] [CrossRef]
- Ren, N.; Li, J.; Li, B.; Wang, Y.; Liu, S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrog. Energy 2006, 31, 2147–2157. [Google Scholar] [CrossRef]
- Buyukkamaci, N.; Filibeli, A. Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem. 2004, 39, 1491–1494. [Google Scholar] [CrossRef]
- Hallenbeck, P.C.; Benemann, J.R. Biological hydrogen production: Fundamentals and limiting processes. Int. J. Hydrog. Energy 2002, 27, 1185–1193. [Google Scholar] [CrossRef]
- Levin, D.B.; Pitt, L.; Love, M. Biohydrogen production: Prospects and limitations to practical application. Int. J. Hydrog. Energy 2004, 29, 173–185. [Google Scholar] [CrossRef]
- Polprasert, C. Organic Waste Recycling: Technology and Management; John Wiley & Sons: Chichester, UK, 1996. [Google Scholar]
- American Public Health Association Inc. (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA: Washington, DC, USA, 1998. [Google Scholar]
- USDA National Nutrient Database for Standard Reference, Release 27; US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory: Beltsville, MD, USA, August 2014.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinbomi, J.; Taherzadeh, M.J. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes. Energies 2015, 8, 4253-4272. https://doi.org/10.3390/en8054253
Akinbomi J, Taherzadeh MJ. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes. Energies. 2015; 8(5):4253-4272. https://doi.org/10.3390/en8054253
Chicago/Turabian StyleAkinbomi, Julius, and Mohammad J. Taherzadeh. 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes" Energies 8, no. 5: 4253-4272. https://doi.org/10.3390/en8054253
APA StyleAkinbomi, J., & Taherzadeh, M. J. (2015). Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes. Energies, 8(5), 4253-4272. https://doi.org/10.3390/en8054253