Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids
Abstract
:1. Introduction
2. Thermo-Physical Properties
2.1. Thermal Conductivity
2.2. Viscosity
2.3. Density
3. Performance Characteristics of Refrigeration Systems
3.1. COP (Coefficient of Performance)
3.2. Energy Consumption
Proportion (g/L) | Tfd (°C) | Tfz (°C) | On-Time Ratio (%) | Psuc (bar) | Pdis (bar) | Tdom (°C) | TEvp (°C) | TCond (°C) | TRoom (°C) |
---|---|---|---|---|---|---|---|---|---|
0 | 5.33 | −18.13 | 46.67 | 0.595 | 5.611 | 42.14 | −24.30 | 33.87 | 25.91 |
0.1 | 5.40 | −18.80 | 44.12 | 0.583 | 5.700 | 45.09 | −24.96 | 34.91 | 24.99 |
0.5 | 5.36 | −19.06 | 43.39 | 0.574 | 5.463 | 47.18 | −25.14 | 34.18 | 25.27 |
Concentration (g/L) | 0 | 0.1 | 0.5 |
Energy consumption (kW·h) | 0.9567 | 0.8999 | 0.8649 |
Energy saving (%) | / | 5.94 | 9.6 |
3.3. Nanolubricants
Mass Fraction % | POE | 0.06 TiO2 | 0.1 TiO2 | 0.1 TiO2 (50 Days Later) |
---|---|---|---|---|
Energy consumption (kW h/day) | 1.077 | 0.849 | 0.796 | 0.8 |
Energy saving % | – | 21.2 | 26.1 | 25.7 |
4. Conclusions
- Based on the literature review done on nanorefrigerants, it is observed that the thermal conductivity of a nanorefrigerant is higher than that of the base fluid. It is confirmed that the thermal conductivity increases with the volume concentration/mass fraction of nanoparticles in the working fluid.
- As CNT (carbon nano tube) has exceptionally high thermal conductivity, the thermal conductivity of CNT-based nanorefrigerants was found to be higher as compared to other nanorefrigerants.
- When the nanoparticle size is increased, the thermal conductivity is found to decrease, although the surface area increased on account of the larger size of the nanoparticles.
- When compared with different types of nanoparticles, CNT-based nanorefrigerants showed the maximum increase in thermal conductivity.
- The viscosity of nanorefrigerants was found to increase with the increase in particle volume fraction and decrease with the increase in temperature.
- When the mass fraction of the surfactant was increased, viscosity was found to be increased for a synthetic polyolester based aluminium oxide nanoparticles and polymeric surfactant for temperature range of 300 to 318 K.
- The density of CuO nanolubricant decreased with increase in temperature.
- The highest rise in the COP of 15% in an Al2O3/R34a system was found at higher temperatures because of enhanced thermal conductivity.
- A reduction of 11% in compressor work was observed when the TiO2 nanoparticles were suspended in mineral oil and used with a base refrigerant.
- Nanorefrigerant-based systems consumed 9.6% less energy with 0.5 g/L TiO2-R600a nanorefrigerant as compared to a system with a base refrigerant.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
MWCNT | Multiwall carbon nanotube |
CNT | Carbon nanotube |
EG | Ethylene glycol |
Χnp | Mass fraction of nanoparticles |
ΧS | Mass fraction of surfactant |
Tsuc | Compressor suction temperature |
Tcond | Condenser temperature |
Tdis | Compressor discharge temperature |
Tdom | Compressor dome temperature |
Tfz | Frozen food storage compartment evaporator temperature |
Tfd | Fresh food storage compartment evaporator inlet temperature |
Tevp | Evaporator temperature |
Psuc | Compressor suction pressure |
Pdis | Compressor discharge pressure |
References
- Wen, D.; Lin, G.; Vafaei, S.; Zhang, K. Review of nanofluids for heat transfer applications. Particuology 2007, 7, 141–150. [Google Scholar] [CrossRef]
- Liu, Z.; Xiong, J.; Bao, R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int. J. Multiph. Flow 2007, 33, 1284–1295. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Experimental investigation into the pool boiling heat transfer of aqueous based-Al2O3 nanofluids. J. Nanopart. Res. 2005, 7, 265–274. [Google Scholar] [CrossRef]
- Bang, I.; Chang, S. Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf. 2005, 48, 2407–2419. [Google Scholar] [CrossRef]
- You, S.; Kim, J.; Kim, K. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 2003, 83, 3374–3376. [Google Scholar] [CrossRef]
- Torii, S. Experimental study on thermal transport phenomenon of nanofluids as working fluid in heat exchanger. Int. J. Air-Cond. Refrig. 2014, 22, 1450005:1–1450005:6. [Google Scholar] [CrossRef]
- Sözen, A.; Özbaş, E.; Menlik, T.; Çakır, M.T.; Gürü, M.; Boran, K. Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study. Int. J. Refrig. 2014, 44, 73–80. [Google Scholar] [CrossRef]
- Saidur, R.; Leong, K.Y.; Mohammad, H.A. A review on applications and challenges of nanofluids. Renew. Sust. Energ. Rev. 2011, 15, 1646–1668. [Google Scholar] [CrossRef]
- Yang, D.; Sun, B.; Li, H.W.; Fan, X.C. Experimental study on the heat transfer and flow characteristics of nanorefrigerants inside a corrugated tube. Int. J. Refrig. 2015, 56, 213–223. [Google Scholar] [CrossRef]
- Smalley, R.E. Future global energy prosperity: the terawatt challenge. In Material Matters; MRS Bulletin: Warrendale, PA, USA, 2005; pp. 412–417. [Google Scholar]
- Alawi, O.A.; Sidik, N.A.C.; Beriache, M. Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: A review. Int. Commun. Heat Mass Transf. 2015, 68, 91–97. [Google Scholar] [CrossRef]
- Jwo, C.S.; Jeng, L.Y.; Teng, T.P.; Chang, H. Effects of nanolubricant on performance of hydrocarbon refrigerant system. J. Vac. Sci. Technol. B 2009, 27, 1473–1477. [Google Scholar] [CrossRef]
- Alawi, O.A.; Sidik, N.A.C.; Mohammed, H.A. A comprehensive review of fundamentals, preparation and applications of nanorefrigerants. Int. Commun. Heat Mass Transf. 2014, 54, 81–95. [Google Scholar] [CrossRef]
- Celen, A.; Çebi, A.; Aktas, M.; Mahian, O.; Dalkilic, A.S.; Wongwises, S. A review of nanorefrigerants: Flow characteristics and applications. Int. J. Refrig. 2014, 44, 125–140. [Google Scholar] [CrossRef]
- Saidur, R.; Kazi, S.N.; Hossain, M.S.; Rahman, M.M.; Mohammed, H.A. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew. Sust. Energ. Rev. 2011, 15, 310–323. [Google Scholar] [CrossRef]
- Philip, J.; Shima, P.D. Thermal properties of nanofluids. Adv. Colloid Interface Sci. 2012, 183–184, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Buongiorno, J.; Venerus, D.C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y.V.; Keblinski, P.; Hu, L.-W.; Alvarado, J.L.; et al. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009, 106. [Google Scholar] [CrossRef] [Green Version]
- Alawi, O.A.; Sidik, N.A.C. Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants. Int. Commun. Heat Mass Transf. 2014, 58, 125–131. [Google Scholar] [CrossRef]
- Jiang, W.; Ding, G.; Peng, H.; Gao, Y.; Wang, K. Experimental and model research on nanorefrigerant thermal Conductivity. HVAC&R Res. 2009, 15, 651–669. [Google Scholar]
- Alawi, O.A.; Sidik, N.A.C. Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nanorefrigerant. Int. Commun. Heat Mass Transf. 2014, 58, 79–84. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. A new thermal conductivity model for nanofluids. J. Nanopart. Res. 2004, 6, 577–588. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. Int. Commun. Heat Mass Transf. 2013, 43, 100–104. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Fadhilah, S.A.; Saidur, R.; Leon, K.Y.; Amalina, M.A. Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. Int. J. Heat Mass Transf. 2013, 57, 100–108. [Google Scholar] [CrossRef]
- Sitprasert, C.; Dechaumphai, P.; Juntasaro, V. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer. J. Nanopart. Res. 2009, 11, 1465–1476. [Google Scholar] [CrossRef]
- Leong, K.C.; Yang, C.; Murshed, S.M.S. A model for the thermal conductivity of nanofluids—The effect of interfacial layer. J. Nanopart. Res. 2006, 8, 245–254. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Investigation of viscosity of R123-TiO2 nanorefrigerant. Int. J. Mech. Mat. Eng. 2012, 7, 146–151. [Google Scholar]
- Duangthongsuk, W.; Wongwises, S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp. Therm. Fluid Sci. 2009, 33, 706–714. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; Tan, C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9. [Google Scholar] [CrossRef]
- Kulkarni, D.P.; Das, D.K.; Chukwu, G.A. Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid). J. Nanosci. Nanotechnol. 2006, 6, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Namburu, P.K.; Kulkarni, D.P.; Misra, D.; Das, D.K. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp. Therm. Fluid Sci. 2007, 32, 397–402. [Google Scholar] [CrossRef]
- Kedzierski, M.A. Viscosity and density of aluminum oxide nanolubricant. Int. J. Refrig. 2013, 36, 1333–1340. [Google Scholar] [CrossRef]
- Kedzierski, M.A. Viscosity and density of CuO nanolubricant. Int. J. Refrig. 2012, 35, 1997–2002. [Google Scholar] [CrossRef]
- Jiang, W.; Ding, G.; Peng, H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int. J. Therm. Sci. 2009, 48, 1108–1115. [Google Scholar] [CrossRef]
- Bobbo, S.; Fedele, L.; Fabrizio, M.; Barison, S.; Battiston, S.; Pagura, C. Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility. Int. J. Refrig. 2010, 33, 1180–1186. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Y.; Xie, G. Use of nano-particles (N-TiO2(R)) to make hydro-fluorocarbons refrigerants more compatible with oil lubricants. In Proceedings of the IIR-IRHACE International Conference on Innovative Equipment and Systems for Comfort and Food Preservation, Auckland, New Zealand; 2006; pp. 205–212. [Google Scholar]
- Lee, K.; Hwang, Y.; Cheong, S.; Kwon, L.; Kim, S.; Lee, J. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr. Appl. Phys. 2009, 9, e128–e131. [Google Scholar] [CrossRef]
- Lin, L.; Peng, H.; Ding, G. Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng. 2015, 91, 163–171. [Google Scholar] [CrossRef]
- Bi, S.; Shi, L.; Zhang, L. Application of nanoparticles in domestic refrigerators. Appl. Therm. Eng. 2008, 28, 1834–1843. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Saadah, A.; Saidur, R.; Khairul, M.A.; Kamyar, A. Thermal performance analysis of Al2O3/R-134a nanorefrigerant. Int. J. Heat Mass Transf. 2015, 85, 1034–1040. [Google Scholar] [CrossRef]
- Xing, M.; Wang, R.; Yu, J. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. Int. J. Refrig. 2014, 40, 398–403. [Google Scholar] [CrossRef]
- Sabareesh, R.K.; Gobinath, N.; Sajith, V.; Das, S.; Sobhan, C.B. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems-An experimental investigation. Int. J. Refrig. 2012, 35, 1989–1996. [Google Scholar] [CrossRef]
- Bi, S.; Guo, K.; Liu, Z.; Wu, J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conv. Manag. 2011, 52, 733–737. [Google Scholar] [CrossRef]
- Bi, S.; Shi, L. Experimental investigation of a refrigerator with a nanorefrigerant. J. Tsinghua Univ. 2007, 47, 1999–2002. [Google Scholar]
- Subramani, N.; Prakash, M.J. Experimental studies on a vapour compression system using nanorefrigerants. Int. J. Eng. Sci. Technol. 2011, 3, 95–102. [Google Scholar] [CrossRef]
- Kedzierski, M.A. Effect of CuO nanoparticle concentration on R134a/lubricant pool boiling heat transfer. In Proceedings of the MNHT2008 Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan, 6–9 January 2008.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, M.S.; Kim, S.C.; Seo, J.-H.; Lee, M.-Y. Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids. Energies 2016, 9, 22. https://doi.org/10.3390/en9010022
Patil MS, Kim SC, Seo J-H, Lee M-Y. Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids. Energies. 2016; 9(1):22. https://doi.org/10.3390/en9010022
Chicago/Turabian StylePatil, Mahesh Suresh, Sung Chul Kim, Jae-Hyeong Seo, and Moo-Yeon Lee. 2016. "Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids" Energies 9, no. 1: 22. https://doi.org/10.3390/en9010022
APA StylePatil, M. S., Kim, S. C., Seo, J. -H., & Lee, M. -Y. (2016). Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids. Energies, 9(1), 22. https://doi.org/10.3390/en9010022