On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review
Abstract
:1. Introduction
2. Governing Equations of Motion and Heat Transfer
3. A Brief Review of Thermal Conductivity of Slag
- Thermal conductivity of coal ashes and slags of different porosity with a cubicle array of uniform cubes or cubic cells stacked together can be calculated using Equation (3.1) or Equation (3.2).
- Thermal diffusivity of different materials over a broad temperature range can be measured using Equation (3.4).
- Solid and liquid slags are placed in a cylindrical crucible in the isothermal zone of a furnace and their thermal diffusivity can be measured using Equation (3.11).
- The radial heat flow method with cylindrical geometry and a centered heating element can be used to determine the steady state thermal conductivity of slags using Equation (3.12).
- The hot-wire method is a transient radial flow method to calculate thermal conductivity measurements of slags using Equation (3.26)
- The line source method as a transient technique can be used to determine the thermal conductivity of molten slags using Equation (3.36).
- There are the cases where models are developed using different parameters, for example where the effects of porosity [20], or the density with the specific heat capacity of the slag [22] are considered, where in some cases the thickness of the sample and its transparency [25,26] are also included. Certain studies consider the effect of particle diameter and emissivity [30], time [32], and in some complicated situations, even the effects of the anisotropy of the heat transfer in different directions (parallel or normal to the layers) [37] are presented. Other researchers, have studied the effect of radiation heat transfer [37,38], or included the surface area of slag [40] and the contacts between the particles, whereas some studies have considered the slag viscosity [46] and the surface tension effects [49].
- And finally, there models based specifically on the different methods for measurement of the thermal conductivity; these are shown in Table 1.
Prediction of Thermal Conductivity of Ash Deposits | See Equations (3.1) and (3.2) |
---|---|
The laser flash method | See Equation (3.4) |
The radial wave method | See Equation (3.11) |
The radial heat flow method | See Equation (3.12) |
The hot wire method | See Equation (3.26) |
The line source method | See Equations (3.35) |
4. Constitutive Modeling of the Heat Flux Vector for Molten Slag
4.1. Explicit Approach
4.2. Implicit Approach
“It follows from this result that, in calculating the temperature of point P, we must take into account the temperature of every other point Q, however distant, and however short the time may be during which the propagation of heat has been going on. Hence, in a strict sense, the influence of a heated part of the body extends to the most distant parts of the body in an incalculably short time, so that it is impossible to assign to the propagation of heat a definite velocity.”
5. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Massoudi, M.; Wang, P. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag. Energies 2013, 6, 807–838. [Google Scholar] [CrossRef]
- Erickson, T.A.; Allan, S.E.; McCollor, D.P.; Hurley, J.P.; Srinivasachar, S.; Kang, S.G.; Baker, J.E.; Morgan, M.E.; Johnson, S.A.; Borio, R. Modeling of fouling and slagging in coal-fired utility boilers. Fuel Process. Technol. 1995, 44, 155–171. [Google Scholar] [CrossRef]
- Vorres, K.S.; Greenberg, S.; Poeppel, R. Viscosity of synthetic coal ash slags. ACS Symp. Ser. 1986, 301, 156–169. [Google Scholar]
- Lawn, C.J. Principles of Combustion Engineering for Boilers; Academic Press: London, UK, 1987. [Google Scholar]
- Jak, E.; Saulov, D.; Kondratiev, A.; Hayes, P.C. Prediction of phase equilibria and viscosity in complex coal ash slag systems. Abstr. Pap. Am Chem. Soc. 2004, 227, U1079. [Google Scholar]
- Groen, J.C.; Brooker, D.D.; Welch, P.J.; Oh, M.S. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses. Fuel Process. Technol. 1998, 56, 103–127. [Google Scholar] [CrossRef]
- Zbogar, A.; Frandsen, F.J.; Jensen, P.A.; Glarborg, P. Heat transfer in ash deposits: A modelling tool-box. Prog. Energy Combust. Sci. 2005, 31, 371–421. [Google Scholar] [CrossRef]
- Zbogar, A.; Frandsen, F.J.; Jensen, P.A.; Glarborg, P. Shedding of ash deposits. Prog. Energy Combust. Sci. 2009, 35, 31–56. [Google Scholar] [CrossRef]
- Massoudi, M.; Wang, P. A Brief Review of Viscosity Models for Slag in Coal Gasification. Available online: http://www.osti.gov/servlets/purl/1036735/ (accessed on 27 December 2015).
- Slattery, J.C. Advanced Transport Phenomena; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Liu, I.S. Continuum Mechanics; Springer-Verlag: Berlin, German, 2002. [Google Scholar]
- Muller, I. On entropy inequality. Arch. Ration. Mech. Anal. 1967, 26, 118–141. [Google Scholar] [CrossRef]
- Ziegler, H. An Introduction to Thermomechanics; 2nd Revised ed.; North-Holland Publishing Company: Amsterdam, The Netherland, 1983. [Google Scholar]
- Fourier, J. The Analytical Theory of Heat (Dover Books on Physics); Dover Publications: New York, NY, USA, 2003. [Google Scholar]
- Kaviany, M. Principles of Heat Transfer in Porous Media, 2nd ed.; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
- Petroski, H.J. Departures from fouriers law. ZAMP 1975, 26, 119–124. [Google Scholar] [CrossRef]
- Narasimhan, T.N. Fourier's heat conduction equation: History, influence, and connections. Rev. Geophys. 1999, 37, 151–172. [Google Scholar] [CrossRef]
- Winterton, R.H.S. Early study of heat transfer: Newton and Fourier. Heat Transf. Eng. 2001, 22, 3–11. [Google Scholar] [CrossRef]
- Russell, H. Principles of heat flow in porous insulators. J. Am. Ceram. Soc. 1935, 18, 1–5. [Google Scholar] [CrossRef]
- Leach, A. The thermal conductivity of foams. I. Models for heat conduction. J. Phys. D 1993, 26, 733–739. [Google Scholar] [CrossRef]
- Kingery, W. Heat-Conductivity Processes in Glass. J. Am. Ceram. Soc. 1961, 44, 302–304. [Google Scholar] [CrossRef]
- Parker, W.; Jenkins, R.; Butler, C.; Abbott, G. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 1961, 32, 1679–1684. [Google Scholar] [CrossRef]
- Brailsford, A.; Major, K. The thermal conductivity of aggregates of several phases, including porous materials. Br. J. Appl. Phys. 1964, 15, 313–319. [Google Scholar] [CrossRef]
- Susa, M.; Nagata, K.; Goto, K. Temperatuere-Dependence of Thermal-Conductivity of Solid and Liquid Slags; Transactions of the Iron and Steel Institute of Japan: Tokyo, Japan, 1982; p. B42. [Google Scholar]
- Taylor, R.; Mills, K.C. Thermal conductivity of slags used in electroslag remelting. Arch. Eisenhuettenwesen 1982, 53, 55–63. [Google Scholar]
- Mills, K. Heat Transfer and Thermal Conductivity of Coal Slags; American Chemical Society: Washington, DC, USA, 1986; pp. 257–276. [Google Scholar]
- Fine, H.A.; Engh, T.; Elliott, J.F. Measurement of the thermal diffusivity of liquid oxides and metallurgical slags. Metall. Trans. B 1976, 7, 277–285. [Google Scholar] [CrossRef]
- Odawara, O.; Okada, I.; Kawamura, K. Measurement of the thermal diffusivity of HTS (a mixture of molten sodium nitrate-potassium nitrate-sodium nitrite; 7–44–49 mole%) by optical interferometry. J. Chem. Eng. Data 1977, 22, 222–225. [Google Scholar] [CrossRef]
- Chekhovskoi, V.Y.; Ulashchik, A. Thermal conductivity of slags in the solid and liquid states. High Temp. Mater. Process. 1987, 25, 672–676. [Google Scholar]
- Botterill, J.; Salway, A.; Teoman, Y. The effective thermal conductivity of high temperature particulate beds—I. Experimental determination. Int. J. Heat Mass Transf. 1989, 32, 585–593. [Google Scholar] [CrossRef]
- Mikrovas, A.C.; Argyropoulos, S. Heat transfer characteristics of molten slags. Ironmak. Steelmak. 1991, 18, 169–181. [Google Scholar]
- Susa, M.; Li, F.; Nagata, K. Thermal conductivity, thermal diffusivity and specific heat of slags containing iron oxides. Ironmak. Steelmak. 1993, 20, 201–206. [Google Scholar]
- Larsen, E.S. The Microscopic Determination of the Nonopaque Minerals; US Government Printing Office: Washington, DC, USA, 1921.
- Krupiczka, R. Analysis of thermal conductivity in granular materials. Int. Chem. Eng. 1967, 7, 122–144. [Google Scholar]
- Hadley, G. Thermal conductivity of packed metal powders. Int. J. Heat Mass Transf. 1986, 29, 909–920. [Google Scholar] [CrossRef]
- Bauer, T. A general analytical approach toward the thermal conductivity of porous media. Int. J. Heat Mass Transf. 1993, 36, 4181–4191. [Google Scholar] [CrossRef]
- Gupta, R.; Wall, T.; Baxter, L. Impact of Mineral Impurities in Solid Fuel Combustion; Springer Science & Business Media: New York, NY, USA, 1999. [Google Scholar]
- McAdams, W.H. Heat Transmission, 3rd ed.; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Laubitz, M. Thermal conductivity of powders. Can. J. Phys. 1959, 37, 798–808. [Google Scholar] [CrossRef]
- Rezaei, H.R.; Gupta, R.P.; Bryant, G.W.; Hart, J.T.; Liu, G.S.; Bailey, C.W.; Wall, T.F.; Miyamae, S.; Makino, K.; Endo, Y. Thermal conductivity of coal ash and slags and models used. Fuel 2000, 79, 1697–1710. [Google Scholar] [CrossRef]
- Boow, J.; Goard, P. Fireside deposits and their effect on heat transfer in apulverized-fuel-fired boiler. J. Inst. Fuel 1969, 42, 412–419. [Google Scholar]
- Quested, P.N.; Monaghan, B.J. The measurement of thermophysical properties of molten slags and fluxes. High Temp. Mater. Process. 2001, 20, 219–234. [Google Scholar] [CrossRef]
- Kang, Y.; Morita, K. Thermal conductivity of the CaO-Al2O3-SiO2 system. ISIJ Int. 2006, 46, 420–426. [Google Scholar] [CrossRef]
- Sun, S.Y.; Tran, T.; Wright, S. Thermal properties of molten slags. In Proceedings of the 1st Australia-China-Japan Symposium on Iron and Steelmaking, Shenyang, China; 2006; pp. 85–89. [Google Scholar]
- Susa, M.; Watanabe, M.; Ozawa, S.; Endo, R. Thermal conductivity of CaO–SiO2–Al2O3 glassy slags: Its dependence on molar ratios of Al2O3/CaO and SiO2/Al2O3. Ironmak. Steelmak. 2007, 34, 124–130. [Google Scholar] [CrossRef]
- Ni, J.; Zhou, Z.; Yu, G.; Liang, Q.; Wang, F. Molten slag flow and phase transformation behaviors in a slagging entrained-flow coal gasifier. Ind. Eng. Chem. Res. 2010, 49, 12302–12310. [Google Scholar] [CrossRef]
- Bird, R.; Stewart, W.; Lightfoot, E. Transport Phenomena; John Wiley: New York, NY, USA, 1960. [Google Scholar]
- Mills, K.C.; Rhine, J.M. The measurement and estimation of the physical properties of slags formed during coal gasification: 1. Properties relevant to fluid flow. Fuel 1989, 68, 193–200. [Google Scholar] [CrossRef]
- Brackbill, J.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Hasegawa, H.; Ohta, H.; Shibata, H.; Waseda, Y. Recent Development in the Investigation on Thermal Conductivity of Silicate Melts. High Temp. Mater. Process. 2012, 31, 491–499. [Google Scholar] [CrossRef]
- Oldroyd, J.G. On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 1950, 200, 523–541. [Google Scholar] [CrossRef]
- Oldroyd, J.G. An approach to non-newtonian fluid-mechanics. J. Non-Newton. Fluid Mech. 1984, 14, 9–46. [Google Scholar] [CrossRef]
- Truesdell, C. Hypo-elasticity. J. Ration. Mech. Anal. 1955, 4, 83–131. [Google Scholar] [CrossRef]
- Truesdell, C. Continuum Mechanics: The Mechanical Foundations of Elasticity and Fluid Dynamics; Gordon and Breach: New York, NY, USA, 1966. [Google Scholar]
- Rajagopal, K.R. On implicit constitutive theories for fluids. J. Fluid Mech. 2006, 550, 243–249. [Google Scholar] [CrossRef]
- Massoudi, M.; Mehrabadi, M.M. Implicit Continuum Mechanics Approach to Heat Conduction in Granular Materials. Ind. Eng. Chem. Res. 2010, 49, 5215–5221. [Google Scholar] [CrossRef]
- Massoudi, M.; Mehrabadi, M.M. Implicit constitutive relations in thermoelasticity. Int. J. Non-Linear Mech. 2011, 46, 286–290. [Google Scholar] [CrossRef]
- Truesdell, C. Rational Thermodynamics, 2nd ed.; Springer-Verlag: New York, NY, USA, 1984. [Google Scholar]
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics; Springer-Verlag: New York, NY, USA, 1992. [Google Scholar]
- Bowen, R.M. Introduction to Continuum Mechanics for Engineers; Plenum Press: New York, NY, USA, 1989. [Google Scholar]
- Coleman, B.D.; Mizel, V.J. Thermodynamics and departures from fouriers law of heat conduction. Arch. Ration. Mech. Anal. 1963, 13, 245–261. [Google Scholar] [CrossRef]
- Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Green, A.E.; Lindsay, K.A. Thermoelasticity. J. Elast. 1972, 2, 1–7. [Google Scholar] [CrossRef]
- Liu, I.S. On fourier law of heat-conduction. Contin. Mech. Thermodyn. 1990, 2, 301–305. [Google Scholar] [CrossRef]
- Jaric, J.; Golubovic, Z. Fourier's law of heat conduction in a nonlinear fluid. J. Therm. Stress. 1999, 22, 293–303. [Google Scholar]
- Wang, L.Q. Vector-field theory of heat flux in convective heat transfer. Nonlinear Anal. Theory Methods Appl. 2001, 47, 5009–5020. [Google Scholar] [CrossRef]
- Massoudi, M. On the heat flux vector for flowing granular materials—Part I: Effective thermal conductivity and background. Math. Methods Appl. Sci. 2006, 29, 1585–1598. [Google Scholar] [CrossRef]
- Massoudi, M. On the heat flux vector for flowing granular materials—PART II: Derivation and special cases. Math. Methods Appl. Sci. 2006, 29, 1599–1613. [Google Scholar] [CrossRef]
- Jeffrey, D.J. Conduction through a random suspension of spheres. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1973, 335, 355–367. [Google Scholar] [CrossRef]
- Greenberg, M.D. Foundations of Applied Mathematics; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1978. [Google Scholar]
- Maxwell, J.C. On the dynamical theory of gases. Phil. Trans. R. Soc. Lond. 1867, 157, 49–88. [Google Scholar] [CrossRef]
- Maxwell, J.C. Theory of Heat; Dover Publications Inc.: New York, NY, USA, 2001. [Google Scholar]
- Chandrasekharaiah, D.S. Thermoelasticity with second sound: A review. Appl. Mech. Rev. 1986, 39, 355–376. [Google Scholar] [CrossRef]
- Chandrasekharaiah, D.S. Hyperbolic thermoelasticity: A review of recent literature. Appl. Mech. Rev. 1998, 51, 705–729. [Google Scholar] [CrossRef]
- Morgan, A.J.A. Some properties of media by constitutive equations in implicit form. Int. J. Eng. Sci. 1966, 4, 155–178. [Google Scholar] [CrossRef]
- Fox, N. Generalised thermoelasticity. Int. J. Eng. Sci. 1969, 7, 437–445. [Google Scholar] [CrossRef]
- McTaggart, C.L.; Lindsay, K.A. Nonclassical effects in the benard-problem. Siam J. Appl. Math. 1985, 45, 70–92. [Google Scholar] [CrossRef]
- Spencer, A.J.M. Theory of Invariants. In Continuum Physics; Eringen, A.C., Ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Zheng, Q.S. Theory of representations for tensor functions—A unified invariant approach to constitutive equations. Appl. Mech. Rev. 1994, 47, 545–587. [Google Scholar] [CrossRef]
- Chester, M. Second sound in solids. Phys. Rev. 1963, 131. [Google Scholar] [CrossRef]
- Miao, L.; Massoudi, M. Effects of Shear Dependent Viscosity and Variable Thermal Conductivity on the Flow and Heat Transfer in a Slurry. Energies 2015, 8, 11546–11574. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massoudi, M.; Kim, J.; Wang, P. On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review. Energies 2016, 9, 27. https://doi.org/10.3390/en9010027
Massoudi M, Kim J, Wang P. On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review. Energies. 2016; 9(1):27. https://doi.org/10.3390/en9010027
Chicago/Turabian StyleMassoudi, Mehrdad, Jeongho Kim, and Ping Wang. 2016. "On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review" Energies 9, no. 1: 27. https://doi.org/10.3390/en9010027
APA StyleMassoudi, M., Kim, J., & Wang, P. (2016). On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review. Energies, 9(1), 27. https://doi.org/10.3390/en9010027