A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions
Abstract
:1. Introduction
2. Related Work
2.1. Second-Order ECM
2.2. Rakhmatov and Vrudhula Diffusion Model
3. Proposed Battery Simulator
3.1. Nonlinear Capacity Estimation
3.2. Linear Extrapolation for EMF Extraction
3.3. Overpotential Resistance Modeling
3.4. Overpotential Voltage Modeling
4. Model Validation
4.1. Model Parameter Extraction
- Charging process:The test cell is charged with a constant current-constant voltage (CC-CV) profile. The charging current in the CC regime is 0.8 C. The charging voltage in the CV regime is 4.2 V. The cutoff current is 0.05 mA. When the charging current drops down to this level, the test cell is fully charged or 100% SOC.
- Discharging process:In total, 10 constant currents are applied firstly. The current range is from 0.1 C to 1.0 C, and the increment is 0.1 C. In addition, a small current rate, 0.02 C, is tested, and the result is the reference current for EMF measurement. The cutoff voltage in discharging processes is 3.0 V. When the cell voltage is less than 3.0 V, the battery is fully discharged or 0% SOC.
- Relaxation time:One hour of relaxation time is required after charging or discharging processes and makes sure that the cell is fully recovered for the next test.
4.2. Dynamic Load Prediction
Profile | Description | Configuration: Current (Time) |
---|---|---|
heavy load | 0.9 C (100 min) | |
light load | 0.5 C (150 min) | |
interrupted load | 1.1 C (20 min)-rest (20 min)-1.1 C (100 min) | |
increasing load | 0.4 C (20 min)-rest (10 min)-0.6 C (20 min)-rest (10min) | |
0.8 C (20 min)-rest (10 min)-1.0 C (100 min) | ||
decreasing load | 1.0 C (20 min)-rest (10 min)-0.8 C (20 min)-rest (10 min) | |
0.6 C (20 min)-rest (10 min)-0.4 C (100 min) | ||
varying load | 0.2 C (20 min)-0.5 C (10 min)-0.9 C (10 min)-0.6 C (10 min) | |
0.3 C (60 min)-0.2 C (20 min)-0.5 C (10 min)-0.9 C (60 min) |
5. Experimental Results
5.1. Results of Parameter Extraction
C-rate (C) | 1.0 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 |
Discharge time (min) | 54.37 | 60.67 | 68.73 | 75.75 | 91.95 | 110.683 |
C-rate (C) | 0.4 | 0.3 | 0.2 | 0.1 | 0.02 | |
Discharge time (min) | 139.03 | 185.15 | 278.38 | 558.08 | 2740.93 |
5.2. Results of Dynamic Load Prediction
MATLAB | runtime error | 0.11% | 0.20% | 0.92% | 0.56% | 1.19% | 0.34% |
behavior error (NRMSD) | 2.22% | 1.16% | 2.33% | 1.26% | 3.14% | 1.04% | |
PSIM | runtime error | 0.15% | 0.17% | 0.95% | 0.56% | 1.15% | 0.34% |
behavior error (NRMSD) | 2.42% | 1.14% | 2.33% | 1.25% | 3.07% | 1.04% |
6. Discussion
Profile | Configuration: Current (Time) |
---|---|
Dynamic current load | 0.182 C (20 min)-0.364 C (10 min)-0.545 C (10 min)-0.727 C (10 min)-0.909 C (100 min) |
Profile | Runtime | Discharging capacity |
---|---|---|
Dynamic current load | 92.4 min | 830.022 mAh |
Constant current load | 92.7 min | 832.404 mAh |
Growth rate | (+0.33%) | (+0.29%) |
Profile | Runtime | Discharging Capacity | ||
---|---|---|---|---|
Experiment | Simulator | Experiment | Simulator | |
Dynamic current load | 87.37 min | 87.98 min | 988.216 mAh | 997.222 mAh |
Constant current load | 91.95 min | 91.98 min | 1011.450 mAh | 1011.111 mAh |
Growth rate | (+5.24%) | (+4.55%) | (+2.35%) | (+1.39%) |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gao, J.; Zhang, Y.; He, H. A real-time joint estimator for model parameters and state of charge of lithium-ion batteries in electric vehicles. Energies 2015, 8, 8594–8612. [Google Scholar] [CrossRef]
- Xia, B.; Wang, H.; Tian, Y.; Wang, M.; Sun, W.; Xu, Z. State of charge estimation of lithium-ion batteries using an adaptive cubature kalman filter. Energies 2015, 8, 5916–5936. [Google Scholar] [CrossRef]
- Uddin, K.; Picarelli, A.; Lyness, C.; Taylor, N.; Marco, J. An acausal Li-ion battery pack model for automotive applications. Energies 2014, 7, 5675–5700. [Google Scholar] [CrossRef]
- Sepasi, S.; Roose, L.R.; Matsuura, M.M. Extended kalman filter with a fuzzy method for accurate battery pack state of charge estimation. Energies 2015, 8, 5217–5233. [Google Scholar] [CrossRef]
- Lee, J.; Yi, J.; Shin, C.B.; Yu, S.H.; Cho, W.I. Modeling the effects of the cathode composition of a lithium iron phosphate battery on the discharge behavior. Energies 2013, 6, 5597–5608. [Google Scholar] [CrossRef]
- Dees, D.W.; Battaglia, V.S.; Bélanger, A. Electrochemical modeling of lithium polymer batteries. J. Power Sources 2002, 110, 310–320. [Google Scholar] [CrossRef]
- Newman, J.; Thomas, K.E.; Hafezi, H.; Wheeler, D.R. Modeling of lithium-ion batteries. J. Power Sources 2003, 119–121, 838–843. [Google Scholar] [CrossRef]
- Gomadam, P.M.; Weidner, J.W.; Dougal, R.A.; White, R.E. Mathematical modeling of lithium-ion and nickel battery systems. J. Power Sources 2002, 110, 267–284. [Google Scholar] [CrossRef]
- Klein, R.; Chaturvedi, N.; Christensen, J.; Ahmed, J.; Findeisen, R.; Kojic, A. Electrochemical model based observer design for a lithium-ion battery. IEEE Trans. Control Syst. Technol. 2013, 21, 289–301. [Google Scholar] [CrossRef]
- Ahmed, R.; El Sayed, M.; Arasaratnam, I.; Tjong, J.; Habibi, S. Reduced-order electrochemical model parameters identification and state of charge estimation for healthy and aged Li-ion batteries-Part II: Aged battery model and state of charge estimation. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 678–690. [Google Scholar] [CrossRef]
- Pedram, M.; Wu, Q. Design considerations for battery-powered electronics. In Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, New Orleans, LA, USA, 21–25 June 1999; pp. 861–866.
- Chiasserini, C.; Rao, R. Energy efficient battery management. IEEE J. Sel. Areas Commun. 2001, 19, 1235–1245. [Google Scholar] [CrossRef]
- Linden, D.; Reddy, T.B. Handbook of Batteries, 3rd ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Manwell, J.F.; McGowan, J.G. Lead acid battery storage model for hybrid energy systems. Sol. Energy 1993, 50, 399–405. [Google Scholar] [CrossRef]
- Rakhmatov, D.; Vrudhula, S.; Wallach, D. A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Trans. VLSI Syst. 2003, 11, 1019–1030. [Google Scholar] [CrossRef]
- Rong, P.; Pedram, M. An analytical model for predicting the remaining battery capacity of lithium-ion batteries. IEEE Trans. VLSI Syst. 2006, 14, 441–451. [Google Scholar] [CrossRef]
- Agarwal, V.; Uthaichana, K.; DeCarlo, R.; Tsoukalas, L. Development and validation of a battery modelu useful for discharging and charging power control and lifetime estimation. IEEE Trans. Energy Convers. 2010, 25, 821–835. [Google Scholar] [CrossRef]
- Schweighofer, B.; Raab, K.; Brasseur, G. Modeling of high power automotive batteries by the use of an automated test system. IEEE Trans. Instrum. Meas. 2003, 52, 1087–1091. [Google Scholar] [CrossRef]
- Chen, M.; Rincon-Mora, G. Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Szumanowski, A.; Chang, Y. Battery management system based on battery nonlinear dynamics modeling. IEEE Trans. Veh. Technol. 2008, 57, 1425–1432. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Thirugnanam, K.; Ezhil Reena, J.; Singh, M.; Kumar, P. Mathematical modeling of Li-ion battery using genetic algorithm approach for V2G applications. IEEE Trans. Energy Convers. 2014, 29, 332–343. [Google Scholar]
- Sánchez, L.; Blanco, C.; Antón, J.; García, V.; González, M.; Viera, J. A variable effective capacity model for LiFePO4 traction batteries using computational intelligence techniques. IEEE Trans. Ind. Electron. 2015, 62, 555–563. [Google Scholar] [CrossRef]
- Yang, H.C.; Dung, L.R. An accurate Lithium-ion battery gas gauge using two-phase STC modeling. In Proceedings of the IEEE 16th International Symposium on Industrial Electronics (ISIE), Vigo, Spain, 4–7 June 2007; pp. 866–871.
- Kim, T.; Qiao, W. A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects. IEEE Trans. Energy Convers. 2011, 26, 1172–1180. [Google Scholar] [CrossRef]
- Zhang, J.; Ci, S.; Sharif, H.; Alahmad, M. An enhanced circuit-based model for single-cell battery. In Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010; pp. 672–675.
- Zhang, J.; Ci, S.; Sharif, H.; Alahmad, M. Modeling discharge behavior of multicell battery. IEEE Trans. Energy Convers. 2010, 25, 1133–1141. [Google Scholar] [CrossRef]
- Hentunen, A.; Lehmuspelto, T.; Suomela, J. Time-domain parameter extraction method for Thévenin-equivalent circuit battery models. IEEE Trans. Energy Convers. 2014, 29, 558–566. [Google Scholar] [CrossRef]
- Yao, L.W.; Aziz, J.; Kong, P.Y.; Idris, N. Modeling of lithium-ion battery using MATLAB/simulink. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1729–1734.
- Abu-Sharkh, S.; Doerffel, D. Rapid test and non-linear model characterisation of solid-state lithium-ion batteries. J. Power Sources 2004, 130, 266–274. [Google Scholar] [CrossRef]
- Kim, J.; Seo, G.S.; Chun, C.; Cho, B.H.; Lee, S. OCV hysteresis effect-based SOC estimation in extended Kalman filter algorithm for a LiFePO4/C cell. In Proceedings of the 2012 IEEE International Electric Vehicle Conference (IEVC), Greenville, SC, USA, 4–8 March 2012; pp. 1–5.
- Baronti, F.; Femia, N.; Saletti, R.; Visone, C.; Zamboni, W. Hysteresis modeling in Li-ion batteries. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Guena, T.; Leblanc, P. How depth of discharge affects the cycle life of Lithium-Metal-Polymer batteries. In Proceedings of the 28th Annual International Telecommunications Energy Conference, Providence, RI, USA, 10–14 September 2006; pp. 1–8.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dung, L.-R.; Yuan, H.-F.; Yen, J.-H.; She, C.-H.; Lee, M.-H. A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions. Energies 2016, 9, 51. https://doi.org/10.3390/en9010051
Dung L-R, Yuan H-F, Yen J-H, She C-H, Lee M-H. A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions. Energies. 2016; 9(1):51. https://doi.org/10.3390/en9010051
Chicago/Turabian StyleDung, Lan-Rong, Hsiang-Fu Yuan, Jieh-Hwang Yen, Chien-Hua She, and Ming-Han Lee. 2016. "A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions" Energies 9, no. 1: 51. https://doi.org/10.3390/en9010051
APA StyleDung, L.-R., Yuan, H.-F., Yen, J.-H., She, C.-H., & Lee, M.-H. (2016). A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions. Energies, 9(1), 51. https://doi.org/10.3390/en9010051