A Practical Method for Assessing the Energy Consumption and CO2 Emissions of Mass Haulers
Abstract
:1. Introduction
2. Literature Review
3. Model Structure
3.1. Collecting Input Data
3.2. Generating a Schedule
3.3. Assessing Energy Consumption and CO2 Emissions
4. Application of the Proposed Model in a Case Study
5. Results and Discussion
- (1)
- The total energy consumption for each hauler per day if a working shift lasts for 8 h and there are two such shifts per work day.
- (2)
- The total CO2 emissions for each hauler per day under the above conditions.
- (3)
- The fleet’s total daily energy consumption and CO2 emissions under the above conditions.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Terms | Productivity Rate (LCM/h) | Number of Cycles (Cycle/h) | Cycle Time (h/Cycle) | Queue Time (h/Cycle) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Haul Distance (m) | 770G | 773E | 775G | 770G | 773E | 775G | 770G | 773E | 775G | 770G | 773E | 775G |
50 | 187.1 | 386.1 | 464.8 | 9.85 | 14.3 | 14.52 | 0.1015 | 0.0699 | 0.0688 | Nil | Nil | Nil |
100 | 184.3 | 368.1 | 450.4 | 9.7 | 13.63 | 14.08 | 0.1031 | 0.0733 | 0.0710 | Nil | Nil | Nil |
250 | 176.7 | 324.0 | 411.2 | 9.3 | 12.0 | 12.850 | 0.1075 | 0.0833 | 0.0778 | Nil | Nil | Nil |
500 | 164.3 | 270.0 | 360.0 | 8.65 | 10.0 | 11.250 | 0.1156 | 0.1 | 0.0889 | Nil | Nil | Nil |
1000 | 145.3 | 202.5 | 288.0 | 7.65 | 7.5 | 9.0 | 0.1308 | 0.1333 | 0.1111 | Nil | Nil | Nil |
2000 | 117.8 | 135.0 | 205.6 | 6.2 | 5.0 | 6.42 | 0.1613 | 0.20 | 0.1556 | Nil | 0.0200 | Nil |
3000 | 98.8 | 101.7 | 160.0 | 5.20 | 3.77 | 5.0 | 0.1923 | 0.2655 | 0.200 | Nil | 0.0455 | Nil |
4000 | 85.5 | 81.0 | 131.2 | 4.5 | 3.0 | 4.1 | 0.2222 | 0.3333 | 0.2439 | Nil | 0.0733 | Nil |
5000 | 75.0 | 67.5 | 110.4 | 3.95 | 2.5 | 3.45 | 0.2533 | 0.4000 | 0.2899 | Nil | 0.1000 | Nil |
6000 | 66.5 | 57.6 | 96.0 | 3.5 | 2.13 | 3.0 | 0.2857 | 0.4688 | 0.3333 | Nil | 0.1288 | Nil |
7000 | 59.8 | 50.4 | 84.8 | 3.15 | 1.87 | 2.65 | 0.3177 | 0.5357 | 0.3774 | Nil | 0.1557 | Nil |
8000 | 55.1 | 45.0 | 76.0 | 2.9 | 1.67 | 2.38 | 0.3448 | 0.6000 | 0.4211 | Nil | 0.1800 | 0.0011 |
9000 | 50.3 | 40.5 | 68.8 | 2.65 | 1.5 | 2.15 | 0.3777 | 0.6667 | 0.4651 | Nil | 0.2067 | 0.0051 |
10,000 | 46.6 | 36.9 | 62.4 | 2.45 | 1.37 | 1.95 | 0.4077 | 0.7317 | 0.5128 | Nil | 0.2317 | 0.0128 |
11,000 | 43.7 | 34.2 | 57.6 | 2.3 | 1.27 | 1.8 | 0.4348 | 0.7895 | 0.5556 | Nil | 0.2495 | 0.0156 |
12,000 | 40.8 | 31.5 | 53.6 | 2.15 | 1.17 | 1.67 | 0.4657 | 0.8571 | 0.5970 | Nil | 0.2771 | 0.0170 |
13,000 | 38.0 | 28.8 | 49.6 | 2.0 | 1.07 | 1.55 | 0.5 | 0.9375 | 0.6452 | Nil | 0.3175 | 0.0252 |
14,000 | 36.1 | 27.0 | 46.4 | 1.9 | 1.0 | 1.45 | 0.5263 | 1.0000 | 0.6897 | Nil | 0.3400 | 0.0297 |
15,000 | 34.2 | 25.2 | 44.0 | 1.8 | 0.93 | 1.38 | 0.5556 | 1.0714 | 0.7273 | Nil | 0.3714 | 0.0273 |
16,000 | 32.3 | 23.4 | 40.8 | 1.7 | 0.87 | 1.2800 | 0.5882 | 1.1538 | 0.7843 | Nil | 0.4138 | 0.0443 |
17,000 | 30.4 | 22.5 | 39.2 | 1.6 | 0.83 | 1.23 | 0.625 | 1.2 | 0.8163 | Nil | 0.4200 | 0.0363 |
18,000 | 29.4 | 21.6 | 36.8 | 1.55 | 0.8 | 1.15 | 0.6463 | 1.2500 | 0.8696 | Nil | 0.4300 | 0.0496 |
19,000 | 27.5 | 20.7 | 35.2 | 1.45 | 0.77 | 1.1 | 0.6909 | 1.3043 | 0.9091 | Nil | 0.4443 | 0.0491 |
20,000 | 26.6 | 18.9 | 33.6 | 1.4 | 0.7 | 1.05 | 0.7143 | 1.4286 | 0.9524 | Nil | 0.5286 | 0.0524 |
21,000 | 25.7 | 18.0 | 32.0 | 1.35 | 0.67 | 1.0 | 0.7393 | 1.5 | 1.0 | Nil | 0.5600 | 0.0600 |
22,000 | 24.7 | 18.0 | 30.4 | 1.3 | 0.67 | 0.95 | 0.7692 | 1.5 | 1.0526 | Nil | 0.5200 | 0.0726 |
23,000 | 23.8 | 17.1 | 28.8 | 1.25 | 0.63 | 0.9 | 0.7983 | 1.5789 | 1.1111 | Nil | 0.5589 | 0.0911 |
Terms | Energy Consumption (MJ/Cycle) | Energy Consumption (MJ/h) | CO2 Emission (Kg/Cycle) | CO2 Emission (Kg/h) | ||||||||
Haul Distance (m) | 770G | 773E | 775G | 770G | 773E | 775G | 770G | 773E | 775G | 770G | 773E | 775G |
50 | 117.1692 | 120.9636 | 133.8372 | 1154.11662 | 1729.7795 | 1943.3161 | 8.5077 | 8.7834 | 9.7181 | 83.80084 | 125.6026 | 141.1068 |
100 | 118.9483 | 126.8802 | 138.1172 | 1153.7987 | 1729.3771 | 1944.6907 | 8.6370 | 9.2129 | 10.0288 | 83.7789 | 125.5718 | 141.2055 |
250 | 124.0632 | 144.1512 | 151.2828 | 1153.7878 | 1729.81440 | 1943.9840 | 9.0085 | 10.467 | 10.985 | 83.7790 | 125.604 | 141.157 |
500 | 133.4268 | 172.98 | 172.8 | 1134.1278 | 1729.8000 | 1944.0000 | 9.6883 | 12.560 | 12.547 | 82.350 | 125.6 | 141.15 |
1000 | 150.8753 | 230.64012 | 216.0000 | 1154.1959 | 1729.8009 | 1944.0000 | 10.9552 | 16.7470 | 15.6840 | 83.80728 | 125.6025 | 141.156 |
2000 | 186.0966 | 345.9600 | 302.5681 | 1153.7989 | 1729.8000 | 1942.4873 | 13.5127 | 25.1205 | 21.9698 | 83.77874 | 125.6025 | 141.0461 |
3000 | 221.8860 | 459.2160 | 388.8000 | 1153.8072 | 1731.2443 | 1944.0000 | 16.111 | 33.346 | 28.231 | 83.777 | 125.71 | 141.15 |
4000 | 256.3999 | 576.6012 | 474.1452 | 1153.7996 | 1729.8036 | 1943.9953 | 18.6175 | 41.8676 | 34.4283 | 83.7787 | 125.602 | 141.156 |
5000 | 292.2959 | 691.9200 | 563.4781 | 1154.5687 | 1729.8000 | 1943.9995 | 21.2239 | 50.2411 | 40.9148 | 83.83440 | 125.6027 | 141.1560 |
6000 | 329.6570 | 810.8438 | 648.0000 | 1153.7996 | 1727.0974 | 1944.0000 | 23.9368 | 58.8763 | 47.052 | 83.7788 | 125.4065 | 141.156 |
7000 | 366.5920 | 926.6785 | 733.5850 | 1154.7647 | 1732.8888 | 1944.0001 | 26.6187 | 67.2872 | 53.2664 | 83.84890 | 125.8270 | 141.1559 |
8000 | 397.86192 | 1037.880 | 818.52624 | 1153.7996 | 1733.2596 | 1948.0925 | 28.8892 | 75.3616 | 59.4341 | 83.77868 | 125.8538 | 141.4531 |
9000 | 435.8304 | 1153.1988 | 904.1868 | 1154.95056 | 1729.79820 | 1944.0016 | 31.6460 | 83.7351 | 65.6540 | 83.8619 | 125.6026 | 141.1561 |
10,000 | 470.4336 | 1265.7074 | 996.9232 | 1152.5623 | 1734.019 | 1944.0002 | 34.1587 | 91.9044 | 72.3877 | 83.68881 | 125.9090 | 141.1560 |
11,000 | 501.6521 | 1365.6316 | 1080 | 1153.7998 | 1734.3521 | 1944.0000 | 36.4255 | 99.1600 | 78.4200 | 83.77865 | 125.9332 | 141.156 |
12,000 | 537.3090 | 1482.6856 | 1160.5972 | 1155.21435 | 1734.7421 | 1938.1973 | 39.0146 | 107.6595 | 84.272 | 83.88139 | 125.9616 | 140.7342 |
13,000 | 576.9 | 1621.6877 | 1254.1932 | 1153.8000 | 1735.2058 | 1943.9995 | 41.8893 | 117.753 | 91.068 | 83.7786 | 125.9957 | 141.1554 |
14,000 | 607.26312 | 1729.800 | 1340.6897 | 1153.7999 | 1729.8000 | 1944.0000 | 44.0941 | 125.6027 | 97.3490 | 83.77879 | 125.6027 | 141.15605 |
15,000 | 641.00016 | 1853.3570 | 1413.8183 | 1153.8003 | 1723.6221 | 1951.0692 | 46.5437 | 134.5743 | 102.6589 | 83.77866 | 125.15409 | 141.66928 |
16,000 | 678.7044 | 1995.9228 | 1524.7044 | 1153.7975 | 1736.4528 | 1951.6216 | 49.2816 | 144.926 | 110.711 | 83.7787 | 126.085 | 141.710 |
17,000 | 721.125 | 2075.76 | 1586.9387 | 1153.8000 | 1722.8808 | 1951.9346 | 52.3617 | 150.7232 | 115.2294 | 83.77872 | 125.1002 | 141.7321 |
18,000 | 745.6644 | 2162.25 | 1690.434 | 1155.7798 | 1729.8000 | 1943.9991 | 54.1427 | 157.003 | 122.744 | 83.92118 | 125.6024 | 141.1556 |
19,000 | 797.1710 | 2256.2608 | 1767.2728 | 1155.8980 | 1737.3208 | 1944.0000 | 57.8835 | 163.8296 | 128.3236 | 83.931075 | 126.14879 | 141.15596 |
20,000 | 824.1430 | 2471.1430 | 1851.4285 | 1153.8001 | 1729.8001 | 1943.9999 | 59.8419 | 179.4324 | 134.4343 | 83.77866 | 125.6026 | 141.1560 |
21,000 | 853.0056 | 2594.700 | 1944.000 | 1151.5576 | 1738.4490 | 1944.0000 | 61.9376 | 188.404 | 141.156 | 83.6157 | 126.230 | 141.156 |
22,000 | 887.5404 | 2594.700 | 2046.316 | 1153.8025 | 1738.4490 | 1943.9998 | 64.4452 | 188.404 | 148.585 | 83.7787 | 126.230 | 141.155 |
23,000 | 921.1007 | 2731.2631 | 2160.000 | 1151.3759 | 1720.6958 | 1944.0000 | 66.8822 | 198.3201 | 156.840 | 83.60275 | 124.9416 | 141.156 |
References
- Hajji, A.M.; Lewis, M.P. Development of productivity-based estimating tool for fuel use and emissions from earthwork construction activities. J. Constr. Eng. Proj. Manag. 2013, 3, 58–65. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, S.; Peña-Mora, F.; Abourizk, S. Toward environmentally sustainable construction processes: The U.S. and Canada’s perspective on energy consumption and GHG/CAP emissions. Sustainability 2010, 2, 354–370. [Google Scholar] [CrossRef]
- Zeng, Y.; Cai, Y.; Huang, G.; Dai, J. A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty. Energies 2011, 4, 1624–1656. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Shen, Y.; Wang, X. The energy efficiency of China’s regional construction industry based on the three-stage DEA model and the DEA-DA model. KSCE J. Civ. Eng. 2016, 20, 34–47. [Google Scholar] [CrossRef]
- Lewis, P.; Rasdorf, W.; Frey, H.C.; Pang, S.; Kim, K. Requirements and incentives for reducing construction vehicle emissions and comparison of nonroad diesel engine emissions data sources. J. Constr. Eng. Manag. 2009, 135, 341–351. [Google Scholar] [CrossRef]
- Chow, J.C. Diesel engines: Environmental impact and control. J. Air Waste Manag. Assoc. 2001, 51, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.J.; Visser, A.T. Mine haul road maintenance management systems. J. S. Afr. Inst. Min. Metall. 2003, 103, 303–312. [Google Scholar]
- Park, K.; Hwang, Y.; Seo, S.; Seo, H. Quantitative assessment of environmental impacts on life cycle of roads. J. Constr. Eng. Manag. 2003, 129, 25–31. [Google Scholar] [CrossRef]
- Li, H.; Lei, Z. Implementation of Discrete-Event Simulation (DES) in Estimating & Analyzing CO2 Emission during Earthwork of Building Construction Engineering. In Proceedings of the International Conference on Industrial Engineering and Engineering Management, Xiamen, China, 29–31 October 2010; pp. 87–89.
- Jang, W.; You, H.; Han, S.H. Quantitative Decision Making Model for Carbon Reduction in Road Construction Projects Using Green Technologies. Sustainability 2015, 7, 11240–11259. [Google Scholar] [CrossRef]
- Hellström, E.; Ivarsson, M.; Åslund, J.; Nielsen, L. Look-ahead control for heavy trucks to minimize trip time and fuel consumption. J. Control Eng. Pract. 2009, 17, 245–254. [Google Scholar] [CrossRef]
- Kaboli, A.S.; Carmichael, D.G. Truck dispatching and minimum emissions earthmoving. J. Smart Sustain. Built Environ. 2014, 3, 170–186. [Google Scholar] [CrossRef]
- ICF Consulting. Emission Reduction Incentives for Off-Road Diesel Equipment Used in the Port and Construction Sectors; Nova Science: Hauppauge, NY, USA, 2005. [Google Scholar]
- Carmichael, D.G.; Lea, O.L.; Balatbat, M.C.A. Emissions Management of Urban Earthmoving Fleets. In Proceedings of the International Conference on Engineering, Project, and Production Management, Port Elizabeth, South Africa, 26–28 November 2014; pp. 262–271.
- Peña-Mora, F.A.; Ahn, C.; Golparvar-Fard, M.; Hajibabai, L.; Shiftehfar, S.; An, S.; Aziz, Z.; Song, S. A framework for managing emissions during construction. In Proceedings of the NSF International Workshop on Green Buildings and Sustainable Construction, Cairo, Egypt, 8–11 March 2009.
- Lewis, P.; Hajji, A. Estimating the economic, energy, and environmental impact of earthwork activities. In Proceedings of the 2012 Construction Research Congress, West Lafayette, IN, USA, 21–23 May 2012; pp. 1770–1779.
- Carmichael, D.; Williams, E.; Kaboli, A. Minimum Operational Emissions in Earthmoving. In Proceedings of the 2012 Construction Research Congress, West Lafayette, IN, USA, 21–23 May 2012; pp. 1869–1878.
- Kaboli, A.S.; Carmichael, D.G. Emission and Cost Configurations in Earthmoving Operations. Organ. Technol. Manag. Constr. 2012, 4, 393–402. [Google Scholar]
- Trafikverket. The Swedish Transport Administration’s efforts for improving energy efficiency and for climate mitigation. Publication No. 2012:152. Available online: https://online4.ineko.se/trafikverket/Product/Detail/43997 (accessed on 9 December 2015).
- Trani, M.L.; Bossi, B.; Gangolells, M.; Casals, M. Predicting fuel energy consumption during earthworks. J. Clean. Prod. 2016, 112, 3798–3809. [Google Scholar] [CrossRef]
- Ofori, G.; Gang, G.; Briffett, C. Implementing environmental management systems in construction: Lessons from quality systems. J. Build Environ. 2002, 37, 1397–1407. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H.; Wong, C.T. EnvironalPlanning: Analytic network process model for environmentally conscious construction planning. J. Constr. Eng. Manag. 2005, 131, 92–101. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H. Environmental Management in Construction: A Quantitative Approach; Taylor & Francis Group: New York, NY, USA, 2007; pp. 3, 4, 23. [Google Scholar]
- Zhang, B.; Peng, S.; Xu, X.; Wang, L. Embodiment analysis for greenhouse gas emissions by Chinese economy based on global thermodynamic potentials. Energies 2011, 4, 1897–1915. [Google Scholar] [CrossRef]
- European Commission. Directive 97/68/EC of the European Parliament and of the Council of 16 December 1997 on the Approximation of the Laws of the Member States Relating to Measures against the Emission of Gaseous and Particulate Pollutants from Internal Combustion Engines to be Installed in Non-Road Mobile Machinery; European Commission: Brussels, Belgium, 1998; Available online: http://ec.europa.eu/environment/air/transport/non_road.htm (accessed on 7 September 2016).
- U.S. Environmental Protection Agency (EPA). Recommendations for Reducing Emissions from the Legacy Diesel Fleet; Report from the Clean Air Act Advisory Committee; Createspace: Charleston, SC, USA, 2006. Available online: http://www.epa.gov/cleandiesel/documents/caaac-apr06.pdf (accessed on 10 April 2015).
- Hajji, A.M.; Lewis, M.P. Development of Productivity-Based Estimating Tool for Energy and Air Emissions from Earthwork Construction Activities. J. Smart Sustain. Built Environ. 2013, 2, 84–100. [Google Scholar] [CrossRef]
- Ahn, C.; Pan, W.; Lee, S.; Pena-Mora, F. Enhanced estimation of air emissions from construction operations based on discrete-event simulation. In Proceedings of the International Conference on Computing in Civil and Building Engineering, Nottingham, UK, 30 June–2 July 2010; pp. 237–243.
- Rasdorf, W.; Frey, H.C.; Lewis, P.; Kim, K.; Pang, S.; Abolhassani, S. Field procedures for real-world measurements of emissions from diesel construction vehicles. J. Infrastruct. Syst. 2010, 16, 216–225. [Google Scholar] [CrossRef]
- Marshall, S.; Rasdorf, W.; Lewis, P.; Frey, H. Methodology for estimating emissions inventories for commercial building projects. J. Archit. Eng. 2012, 18, 251–260. [Google Scholar] [CrossRef]
- Arocho, I.; Rasdorf, W.; Hummer, J. Methodology to forecast the emissions from construction equipment for a transportation construction project. In Proceedings of the 2014 Construction Research Congress, Atlanta, GA, USA, 19–21 May 2014; pp. 554–563.
- Ahn, C.; Rekapalli, P.V.; Martinez, J.C.; Peña-Mora, F.A. Sustainability analysis of earthmoving operation. In Proceedings of the Winter Simulation Conference, Austin, TX, USA, 13–16 December 2009; pp. 2605–2611.
- Martinez, J.C.; Ioannou, P.G. General purpose systems for effective construction simulation. J. Constr. Eng. Manag. 1999, 125, 265–276. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H.; Park, H.; Kim, H. Greenhouse gas emissions from onsite equipment usage in road construction. J. Constr. Eng. Manag. 2012, 138, 982–990. [Google Scholar] [CrossRef]
- Guggemos, A.A.; Horvath, A. Decision-support tool for assessing the environmental effects of constructing commercial buildings. J. Archit. Eng. 2006, 12, 187–195. [Google Scholar] [CrossRef]
- Ercelebi, S.G.; Bascetin, A. Optimization of shovel-truck system for surface mining. J. S. Afr. Inst. Min. Metall. 2009, 109, 433–439. [Google Scholar]
- Akhavian, R.; Behzadan, A.H. Simulation-based evaluation of fuel consumption in heavy construction projects by monitoring equipment idle times. In Proceedings of the Winter Simulation Conference, Washington, DC, USA, 8–11 December, 2013; pp. 3098–3108.
- Kean, A.J.; Sawyer, R.F.; Harley, R.A. A fuel-based assessment of off-road diesel engine emissions. J. Air Waste Manag. Assoc. 2000, 50, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Frey, H.; Rasdorf, W.; Lewis, P. Results of a Comprehensive Field Study of Fuel Use and Emissions of Nonroad Diesel Construction Equipment. Transp. Res. Rec. J. Transp. Res. Board 2010, 2158, 69–76. [Google Scholar] [CrossRef]
- Hwang, H.; Davis, S. Off-Highway Gasoline Consumption Estimation Models Used in the Federal Highway Administration Attribution and Process; ORNL/TM-2009/222; U.S. Department of Energy: Oak Ridge, TN, USA, 2009.
- Lucas, A.; Silva, C.A.; Neto, R.C. Life cycle analysis of energy supply infrastructure for conventional and electric vehicles. J. Energy Policy 2012, 41, 537–547. [Google Scholar] [CrossRef]
- Schwarzkopf, A.B.; Leipnik, R.B. Control of highway vehicles for minimum fuel consumption over varying terrain. J. Transp. Res. 1977, 11, 279–286. [Google Scholar] [CrossRef]
- Choi, Y.; Nieto, A. Optimal haulage routing of off-road dump trucks in construction and mining sites using Google Earth and a modified least-cost path algorithm. J. Autom. Constr. 2011, 20, 982–997. [Google Scholar] [CrossRef]
- Fu, J.; Bortolin, G. Gear shift optimization for off-road construction vehicles. J. Procedia-Soc. Behav. Sci. 2012, 54, 989–998. [Google Scholar] [CrossRef]
- Choi, Y.; Park, H.; Sunwoo, C.; Clarke, K.C. Multi-criteria evaluation and least-cost path analysis for optimal haulage routing of dump trucks in large scale open-pit mines. Int. J. Geogr. Inf. Sci. 2009, 23, 1541–1567. [Google Scholar] [CrossRef]
- Larsson, S. Commercial vehicles, fuel efficiency and CO2 challenges & possible solutions. In Proceedings of the IEA Freight Truck Fuel Economy Workshop Challenge Bibendum, Berlin, Germany, 20–21 May 2011.
- O’Reilly, D.J.; Nichols, M.W.; Chu, S. Advancing Technology for America’s Transportation Future; U.S. National Petroleum Council: Washington, DC, USA, 2012; Available online: www.npc.org/reports/trans-future_fuels_summary-2012-lowres.pdf (accessed on 7 November 2015).
- Kecojevic, V.; Komljenovic, D. Haul truck fuel consumption and CO2 emission under various engine load conditions. Official Publication in SME. Mın. Eng. 2010, 62, 44–48. [Google Scholar]
- Burt, C. An Optimisation Approach to Materials Handling in Surface Mines. Ph.D. Thesis, Curtin University of Technology, Bentley, WA, Australia, 2008. [Google Scholar]
- Caterpillar Performance Handbook, 42th ed.; Caterpillar Inc.: Peoria, IL, USA, 2012.
- Hagenbuch, L.G. Adapting the Off-Highway Truck Body Volumetric Process to Real World Conditions; SAE Technical Paper; SAE MOBILUS: Warrendale, PA, USA, 2000. [Google Scholar]
- Clean Fleets Guide. Procuring Clean and Efficient Road Vehicles; International Council for Local Environmental Initiatives (ICLEI-Europe) Local Governments for Sustainability: Freiburg, Germany, 2014; Available online: http://www.clean-fleets.eu/ (accessed on 3 September 2016).
- BIOMASS Energy Center. Carbon emissions of different fuels. Fuels for heating, power and transport. Available online: http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,163182&_dad=portal&_schema=PORTAL (accessed on 13 May 2015).
- Kenley, R.; Harfield, T.; Pirzadeh, P. Mass-Haul Environmental Impact Minimisation. A Practical Method for Greening Road Procurement; Industry Report; Sustainable Built Environment National Research Centre (SBEnrc): Bentley, WA, Australia, 2012. [Google Scholar]
- Kenley, R.; Harfield, T. Greening procurement of infrastructure construction: Optimizing mass haul operation to reduce greenhouse gas emissions. In Proceedings of the CIB W78–W102 International Conference, Sophia Antipolis, France, 26–28 October 2011.
- Törnroos, N. Location-Based Planning as a Production Optimization Technique in Linear Heavy Construction. Master’s Thesis, Aalto University, Espoo, Finland, November 2014. [Google Scholar]
- DynaRoad. DynaRoad 5.3. Scheduling, Production Control and Earthworks Management; User Manual, Topcon Part Number 1003961-01 Manual; DynaRoad Ltd.: Helsinki, Finland, 2014. [Google Scholar]
Item | Caterpillar | Fleet | ||
---|---|---|---|---|
770G | 773E | 775G | ||
Energy consumption (MJ/h) | 1153.799 | 1729.803 | 1943.995 | 4827.597 |
CO2 emission (kg/h) | 83.73 | 125.69 | 141.12 | 350.63 |
Item | Caterpillar | ||
---|---|---|---|
770G | 773E | 775G | |
Ec (MJ/cycle) | 256.399 | 576.601 | 474.145 |
CO2E (kg/cycle) | 18.62 | 41.87 | 34.43 |
Nc (cycle/h) | 4.5 | 3.0 | 4.1 |
Haul distance (km) | 4 | 4 | 4 |
Item | Caterpillar | |||
---|---|---|---|---|
770G | 773E | 775G | Fleet of Three Haulers | |
Ec (MJ/h) | 1153.79 | 1729.78 | 1943.99 | 4827.57 |
Ec (MJ/duty) | 9230.37 | 13,838.24 | 15,551.96 | 38,620.56 |
Ec (MJ/day) | 18,460.73 | 27,676.48 | 31,103.91 | 77,241.12 |
CO2E (kg/h) | 83.79 | 125.60 | 141.16 | 350.54 |
CO2E (kg/duty) | 670.23 | 1004.825 | 1129.25 | 2804.31 |
CO2E (kg/day) | 1340.46 | 2009.65 | 2258.5 | 5608.61 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jassim, H.S.H.; Lu, W.; Olofsson, T. A Practical Method for Assessing the Energy Consumption and CO2 Emissions of Mass Haulers. Energies 2016, 9, 802. https://doi.org/10.3390/en9100802
Jassim HSH, Lu W, Olofsson T. A Practical Method for Assessing the Energy Consumption and CO2 Emissions of Mass Haulers. Energies. 2016; 9(10):802. https://doi.org/10.3390/en9100802
Chicago/Turabian StyleJassim, Hassanean S. H., Weizhuo Lu, and Thomas Olofsson. 2016. "A Practical Method for Assessing the Energy Consumption and CO2 Emissions of Mass Haulers" Energies 9, no. 10: 802. https://doi.org/10.3390/en9100802
APA StyleJassim, H. S. H., Lu, W., & Olofsson, T. (2016). A Practical Method for Assessing the Energy Consumption and CO2 Emissions of Mass Haulers. Energies, 9(10), 802. https://doi.org/10.3390/en9100802