Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids
Abstract
:1. Introduction
2. Nanofluid Synthesis
3. Thermo-Physical Properties
3.1. Thermal Conductivity
3.2. Viscosity
3.3. Heat Transfer Coefficient
4. Heat Transfer Mechanism
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Φ | Volume concentration (Nanoparticle) |
ΔT | Temperature discontinuity |
CNT | Carbon nanotube |
CSM | Chemical Solution Method |
DI | De-ionized |
h | Heat transfer coefficient, W/m2·K |
k | Thermal conductivity, W/m·K |
INBPE | International Nanofluids Property Benchmark Exercise |
MWCNT s | Multi-walled carbon nanotubes |
Re | Reynolds number |
SANSS | Submerged-Arc Nanoparticle Synthesis System |
SN | Surfactant to nanoparticle ratio |
References
- Sidik, N.A.; Mohammed, C.H.A.; Alawi, O.A.; Samion, S. A review on preparation methods and challenges of nanofluids. Int. Commun. Heat Mass 2014, 54, 115–125. [Google Scholar] [CrossRef]
- Keblinski, P.; Eastman, J.A.; Cahill, D.G. Nanofluids for thermal transport. Mater. Today 2005, 8, 36–44. [Google Scholar] [CrossRef]
- Buongiorno, J.; Venerus, D.C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y.V.; Keblinski, P.; Hu, L.W.; Alvarado, J.L.; et al. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009, 106, 094312. [Google Scholar] [CrossRef] [Green Version]
- Torri, S.; Hajime, Y. Effect of aqueous suspension of graphene-oxide nanoparticles on thermal fluid flow transport in circular tube. Int. J. Air-Cond. Ref. 2015, 23, 1550005. [Google Scholar] [CrossRef]
- You, S.M.; Amaya, M.; Kwark, S.M. A review of enhancement of boiling heat transfer through nanofluids and nanoarticle coatings. Int. J. Air-Cond. Ref. 2010, 18, 247–263. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995.
- Manca, O.; Jaluria, Y.; Poulikakos, D. Heat transfer in nanofluids. Adv. Mech. Eng. 2010, 2010. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H. A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater. 2012, 2012, 1–17. [Google Scholar] [CrossRef]
- Ponmani, S.; William, J.K.M.; Samuel, R.; Nagarajan, R.; Sangwai, J.S. Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 37–43. [Google Scholar] [CrossRef]
- Wang, X.; Mujumdar, A.S. A review on nanofluids-part II: Experiments and applications. Braz. J. Chem. Eng. 2008, 25, 631–648. [Google Scholar] [CrossRef]
- Zhu, H.; Han, D.; Meng, Z.; Wu, D.; Zhang, C. Preparation and thermal conductivity of CuO nanofluid via a wet chemical method. Nanoscale Res. Lett. 2011, 6, 181. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Leonard, J.P.; Nettleship, I.; Lee, J.K.; Soong, Y.; Martello, D.V.; Chyu, M.K. Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion. Powder Technol. 2009, 194, 75–80. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. In Proceedings of the Materials Research Society Symposium, New York, NY, USA, January 1996.
- Witharana, S.; Palabiyik, I.; Musina, Z.; Ding, Y. Stability of glycol nanofluids—The theory and experiment. Powder Technol. 2013, 239, 72–77. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Magesh, S.; Kalaiselvam, S. Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems. Thermochim. Acta 2013, 565, 137–145. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, J.K.; Lee, J.K.; Jeong, Y.M.; Cheong, S.I.; Ahn, Y.C.; Kim, S.H. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2008, 186, 145–153. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Mukherjee, S.; Paria, S. Preparation and stability of nanofluids-a review. J. Mech. Civ. Eng. 2013, 9, 63–69. [Google Scholar]
- Das, S.K.; Choi, U.S.; Yu, W.; Pradeep, T. Nanofluids: Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lo, C.H.; Tsung, T.T.; Chen, L.C. Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J. Cryst. Growth 2005, 277, 36–42. [Google Scholar] [CrossRef]
- Wei, X.; Wang, L. Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology 2010, 8, 62–71. [Google Scholar] [CrossRef]
- Wang, L.Q.; Quintard, M. Nanofluids of the future. In Advances in Transport Phenomena; Wang, L.Q., Ed.; Springer: Heidelberg, Germany, 2009; pp. 179–243. [Google Scholar]
- Wei, X.H.; Zhu, H.T.; Wang, L.Q. CePO4 nanofluids: Synthesis and thermal conductivity. J. Thermophys. Heat Transfer 2009, 23, 19–22. [Google Scholar] [CrossRef]
- Drzazga, M.; Dzido, G.; Lemanowicz, M.; Gierczycki, A. Influence of nonionic surfactant on nanofluid properties. In Proceedings of the 14th European Conference on Mixing, Warszawa, Poland, 10–13 September 2012.
- Lee, S.; Choi, S.U.S.; Li, S.; Eastman, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Pryazhnikov, M.I.; Minakov, A.V.; Rudyak, V.Y.; Guzei, D.V. Thermal conductivity measurements of nanofluids. Int. J. Heat Mass Transfer 2017, 104, 1275–1282. [Google Scholar] [CrossRef]
- Masuda, H.; Ebata, A.; Teramaeand, K.; Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 1993, 4, 227–233. (In Japanese) [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y. Thermal conductivity of suspensions containing nanosized SiC particles. Int. J. Thermophys. 2002, 23, 571–580. [Google Scholar] [CrossRef]
- Paul, G.; Philip, J.; Raj, B.; Das, P.; Manna, I. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. Int. J. Heat Mass Transfer 2011, 54, 3783–3788. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, U.S.; Li, S.; Soyez, G.; Thompson, L.J.; DiMelfi, R.J. Novel thermal properties of nanostructured materials. Mater. Sci. Forum 1999, 312–314, 629–634. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer 2003, 125, 567–574. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252–2254. [Google Scholar]
- Liu, M.-S.; Lin, M.C.-C.; Huang, I.-H.; Wang, C.-C. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass 2005, 32, 1202–1210. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Ahn, Y.C.; Shin, H.S.; Lee, C.G.; Kim, G.T.; Park, H.S.; Lee, J.K. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr. Appl. Phys. 2006, 6, 1068–1071. [Google Scholar] [CrossRef]
- Xing, M.; Yu, J.; Wang, R. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int. J. Heat Mass Transfer 2015, 88, 609–616. [Google Scholar] [CrossRef]
- Farbod, M.; Ahangarpour, A.; Etemad, S.G. Stability and thermal conductivity of water-based carbon nanotube nanofluids. Particuology 2015, 22, 59–65. [Google Scholar] [CrossRef]
- Xing, M.; Yu, J.; Wang, R. Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant. Appl. Therm. Eng. 2015, 87, 344–351. [Google Scholar] [CrossRef]
- Hajjar, Z.; Rashidi, A.M.; Ghozatloo, A. Enhanced thermal conductivities of graphene oxide nanofluids. Int. Commun. Heat Mass 2014, 57, 128–131. [Google Scholar] [CrossRef]
- Kamatchi, R.; Venkatachalapathy, S.; Srinivas, B.A. Synthesis, stability, transport properties, and surface wettability of reduced graphene oxide/water nanofluids. Int. J. Therm. Sci. 2015, 97, 17–25. [Google Scholar] [CrossRef]
- Deng, F.; Zheng, Q.S.; Wang, L.F.; Nan, C.W. Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 2007, 90, 021914. [Google Scholar] [CrossRef]
- Nan, C.W.; Shi, Z.; Lin, Y. A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett. 2003, 375, 666–669. [Google Scholar] [CrossRef]
- Chen, T.Y.; Weng, G.J.; Liu, W.C. Effect of Kapitza contact and consideration of tube-end transport on the effective conductivity in nanotube-based composites. J. Appl. Phys. 2005, 97, 104312. [Google Scholar] [CrossRef]
- Wang, M.; Kang, Q.; Pan, N. Thermal conductivity enhancement of carbon fiber composites. Appl. Therm. Eng. 2009, 29, 418–421. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Sabiha, M.A.; Mostafizur, R.M.; Saidur, R.; Mekhilef, S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Transfer 2016, 93, 862–871. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Languri, E.M.; Nunna, M.R. Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid. Int. Commun. Heat Mass 2016, 76, 308–315. [Google Scholar] [CrossRef]
- Hussein, A.M.; Sharma, K.V.; Bakar, R.A.; Kadirgama, K. The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor inside a Horizontal Tube. J. Nanomater. 2013, 2013, 859563. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, K.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.S.; Choi, C.J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transfer 2008, 51, 2651–2656. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transfer 2003, 125, 151–155. [Google Scholar] [CrossRef]
- Ding, Y.; Alias, H.; Wen, D.; Williams, R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transfer 2006, 49, 240–250. [Google Scholar] [CrossRef]
- Assael, M.J.; Chen, C.F.; Metaxa, I.; Wakeham, W.A. Thermal conductivity of suspensions of carbon nanotubes in water. Int. J. Thermophys. 2004, 25, 971–985. [Google Scholar] [CrossRef]
- Xie, H.; Lee, H.; Youn, W.; Choi, M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 2003, 94, 4967. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (Carbon nanotube nanofluids). J. Thermophys. Heat Transfer 2004, 18, 481–485. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Hormozi, F. Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger. Exp. Therma Fluid Sci. 2016, 72, 1–11. [Google Scholar] [CrossRef]
- Duangthongsuk, W.; Wongwises, S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int. J. Heat Mass Transfer 2009, 52, 2059–2067. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Moravek, M.R.; Singh, D. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J. Colloid Interface Sci. 2011, 364, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Prasher, R.; Bhattacharya, P.; Phelan, P. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 2005, 94, 025901. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Shen, Z.; Yang, J.; Wu, S. Flow and heat transfer behaviors of water-based nanofluids confined in nanochannel by molecular dynamics simulation. Dig. J. Nanomater. Biostruct. 2015, 10, 401–413. [Google Scholar]
- Keblinski, P.; Phillpot, S.; Choi, S.; Eastman, J. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transfer 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Cui, W.; Shen, Z.; Yang, J.; Wu, S. Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation. Appl. Therm. Eng. 2015, 76, 261–271. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Saha, S.; Yadav, A.; Phelan, P.; Prasher, R. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J. Appl. Phys. 2004, 95, 6492–6494. [Google Scholar] [CrossRef]
- Li, C.; Peterson, G. Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids). Int. J. Heat Mass Transfer 2007, 50, 4668–4677. [Google Scholar] [CrossRef]
- Li, K.; Li, X.D.; Tu, J.Y.; Wang, H.G. A mathematic model considering the effect of Brownian motion for subcooled nucleate pool boiling of dilute nanofluids. Int. J. Heat Mass Transfer 2015, 84, 46–53. [Google Scholar] [CrossRef]
- Kihm, K.D.; Chon, C.H.; Lee, J.S.; Choi, S.U.S. A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids. Nanoscale Res. Lett. 2011, 6, 361. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Johnson, D.W. Mass transfer in SiO2 nanofluidsa case against purported nanoparticle convection effects. Int. J. Heat Mass Transfer 2012, 55, 3447–3453. [Google Scholar] [CrossRef]
- Eapen, J.; Williams, W.C.; Buongiorno, J.; Hu, L.; Yip, S.; Rusconi, R.; Piazza, R. Meanfield versus microconvection effects in nanofluid thermal conduction. Phys. Rev. Lett. 2007, 99, 095901. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Zhou, L.P.; Peng, X.F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transfer 2003, 46, 2665–2672. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q.; Hu, W. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003, 49, 1038–1043. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.W.; Kim, B.G. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J. Phys. Chem. B 2006, 110, 4323–4328. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.S.; Hong, T.K.; Yang, H.S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl. Phy. Lett. 2006, 88, 031901. [Google Scholar] [CrossRef]
- Kwak, K.; Kim, C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust. Rheol. J. 2005, 17, 35–40. [Google Scholar]
- Feng, Y.; Yu, B.; Xu, P.; Zou, M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J. Phys. D Appl. Phys. 2007, 40, 3164–3171. [Google Scholar] [CrossRef]
- Gowda, R.; Sun, H.; Wang, P.; Charmchi, M.; Gao, F.; Gu, Z.; Budhlall, B. Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids. Adv. Mech. Eng. 2010, 2, 807610. [Google Scholar] [CrossRef]
- Lotfizadeh, S.; Matsoukas, T. A continuum Maxwell theory for the thermal conductivity of clustered nanocolloids. J. Nanopart. Res. 2015, 17, 262. [Google Scholar] [CrossRef]
- Keblinski, P.; Prasher, R.; Eapen, J. Thermal conductance of nanofluidsis the controversy over? J. Nanopart. Res. 2008, 10, 1089–1097. [Google Scholar] [CrossRef]
- Nemade, K.; Waghuley, S. A novel approach for enhancement of thermal conductivity of CuO/H2O based nanofluids. Appl. Therm. Eng. 2016, 95, 271–274. [Google Scholar] [CrossRef]
- Prasher, R.; Phelan, P.; Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006, 6, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, A.; Jastrzembski, K.; Shah, S.I. Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metall. Mat. Trans. A 2006, 37, 2033–2038. [Google Scholar] [CrossRef]
- Avsec, J. The combined analysis of phonon and electron heat transfer mechanism on thermal conductivity for nanofluids. Int. J. Heat Mass Transfer 2008, 51, 4589–4598. [Google Scholar] [CrossRef]
- Lamas, B.; Abreu, B.; Fonseca, A.; Martins, N.; Oliveira, M. Critical analysis of the thermal conductivity models for CNT based nanofluids. Int. J. Therm. Sci. 2014, 78, 65–76. [Google Scholar] [CrossRef]
- Singh, N.; Banerjee, D. Thermal analysis of carbon nanotubes suspended in PAO mixtures. SAE Tech. Pap. 2010. [Google Scholar] [CrossRef]
- Kim, B.H.; Beskok, A.; Cagin, T. Thermal interactions in nanoscale fluid flow: Molecular dynamics simulations with solid–liquid interfaces. Microfluid. Nanofluid. 2008, 5, 551–559. [Google Scholar] [CrossRef]
- Xie, H.; Fujii, M.; Zhang, X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transfer 2005, 48, 2926–2932. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004, 84, 4316. [Google Scholar] [CrossRef]
- Evans, W.; Fish, J.; Keblinski, P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 2006, 88, 093116. [Google Scholar] [CrossRef]
- Wamkam, C.T.; Opoku, M.K.; Hong, H.; Smith, P. Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. J. Appl. Phys. 2011, 109, 024305. [Google Scholar] [CrossRef]
Sample Code | A | B | C | D | E |
---|---|---|---|---|---|
Current (A) | 9 | 9 | 9 | 6 | 4.5 |
Voltage (V) | 220 | 220 | 220 | 220 | 220 |
Pressure of chamber (Torr) | 30 | 30 | 30 | 30 | 30 |
Pulse duration (ms) | 12 | 12 | 12 | 25 | 25 |
Pulse-off time (ms) | 12 | 12 | 12 | 25 | 25 |
Dielectric liquids | De-ionized water | 30% ethylene glycol | 50% ethylene glycol | 70% ethylene glycol | Pure ethylene glycol |
Temperature of dielectric liquid (°C) | 2 | 2 | 2 | 2 | 2 |
Composition | CuO | Cu2O | Cu2O | Cu2O | Cu |
Morphology | Needle-like | Polygon | Polygon, square | Square | Ball-like |
Properties | S-SWNTs | L-SWNTs | MWNTs |
---|---|---|---|
Outer diameter (nm) | 1–2 | 1–2 | 10–30 |
Inner diameter (nm) | 0.8–1.6 | 0.8–1.6 | 0.8–1.6 |
Length (um) | 1–3 | 5–30 | ∼30 |
Aspect ratio | 500–3000 | 2500–30,000 | 1000–3000 |
Special surface area (m2/g) | >380 | >380 | >100 |
Thermal conductivity | ∼4000 | ∼4000 | ∼2000 |
Pure density (g/cm3) | 2.1 | 2.1 | 2.1 |
Purity | >90% | >90% | >90% |
Concentration (%) | 0.01 | 0.02 | 0.03 | 0.1 | 0.2 | 0.3 |
Enhancement (%) | 0.08 | 0.11 | 0.89 | 1.74 | 2.51 | 2.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, M.S.; Seo, J.-H.; Kang, S.-J.; Lee, M.-Y. Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies 2016, 9, 840. https://doi.org/10.3390/en9100840
Patil MS, Seo J-H, Kang S-J, Lee M-Y. Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies. 2016; 9(10):840. https://doi.org/10.3390/en9100840
Chicago/Turabian StylePatil, Mahesh Suresh, Jae-Hyeong Seo, Suk-Ju Kang, and Moo-Yeon Lee. 2016. "Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids" Energies 9, no. 10: 840. https://doi.org/10.3390/en9100840
APA StylePatil, M. S., Seo, J. -H., Kang, S. -J., & Lee, M. -Y. (2016). Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies, 9(10), 840. https://doi.org/10.3390/en9100840