An Analysis Based on SD Model for Energy-Related CO2 Mitigation in the Chinese Household Sector
Abstract
:1. Introduction
2. Methodology
3. Data Description
4. Results and Discussion
4.1. Estimation of Household CO2 Emissions
4.2. Decomposition Analysis
4.2.1. Impact Analysis of Energy Mix
4.2.2. Impact Analysis of Energy Intensity
4.2.3. Impact Analysis of Income Level
4.2.4. Impact Analysis of Population Structure
4.2.5. Impact Analysis of Population Scale
4.3. Modeling Process
4.3.1. Establishment of the SD Model and Dynamic Simulation
4.3.2. Scenario Design
4.3.3. Model Testing and Validation
4.3.4. Result of Scenarios
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Chicco, G.; Stephenson, P.M. Effectiveness of setting cumulative carbon dioxide emissions reduction targets. Energy 2012, 42, 19–31. [Google Scholar] [CrossRef]
- Svirezhev, Y.M.; Svirejeva-Hopkins, A. The model of long-term evolution of the carbon cycle. Ecol. Model. 2008, 216, 114–126. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecol. Econ. 2009, 68, 1667–1675. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhang, Y.; Yang, Z.F.; Fath, B.D.; Li, S.S. Estimation of energy-related carbon emissions in Beijing and factor decomposition analysis. Ecol. Model. 2013, 252, 258–265. [Google Scholar] [CrossRef]
- Liu, L.C.; Fan, Y.; Wu, G.; Wei, Y.M. Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy 2007, 35, 5892–5900. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Chang. 2008, 18, 626–634. [Google Scholar] [CrossRef]
- Li, A.J.; Lin, B.Q. Comparing climate policies to reduce carbon emissions in China. Energy Policy 2013, 60, 667–674. [Google Scholar] [CrossRef]
- Arara, J.I.; Southgateb, D. Evaluating CO2 reduction strategies in the US. Ecol. Model. 2009, 220, 582–588. [Google Scholar] [CrossRef]
- Wang, G.K.; Chen, X.P.; Zhang, Z.L.; Niu, C.L. Influencing factors of energy-related CO2 emissions in China: A decomposition analysis. Sustainability 2015, 7, 14408–14426. [Google Scholar] [CrossRef]
- Buratti, C.; Asdrubali, F.; Palladino, D.; Rotili, A. Energy performance database of building heritage in the region of Umbria, Central Italy. Energies 2015, 8, 7261–7278. [Google Scholar] [CrossRef]
- Du, P.; Wood, A.; Stephens, B. Empirical operational energy analysis of downtown high-rise vs. suburban low-rise lifestyles: A Chicago Case Study. Energies 2016, 9. [Google Scholar] [CrossRef]
- Druckman, A.; Jackson, T. The carbon footprint of UK households 1990–2004: A socio-economically disaggregated, quasi-multi-regional input-output model. Ecol. Econ. 2009, 68, 2066–2077. [Google Scholar] [CrossRef] [Green Version]
- Kenny, T.; Gray, N.F. A preliminary survey of household and personal carbon dioxide emissions in Ireland. Environ. Int. 2009, 35, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.S.; Maraseni, T.; Liu, L.N.; Zhang, Z.Q.; Yusaf, T. A comparison of household carbon emission patterns of urban and rural China over the 17 year period (1995–2011). Energies 2015, 8, 10537–10557. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Chen, S.Q.; Zhang, L.X. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecol. Model. 2013, 252, 44–52. [Google Scholar] [CrossRef]
- Fong, W.K.; Matsumoto, H.; Lun, Y.F. Application of system dynamics model as decision making tool in urban planning process toward stabilizing carbon dioxide emissions from cities. Build. Environ. 2009, 44, 1528–1537. [Google Scholar] [CrossRef]
- Lozano, S.; Gutiérrez, E. Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions. Ecol. Econ. 2008, 66, 687–699. [Google Scholar] [CrossRef]
- Rutger, H.; Jeroen, C.J.M. Comparing structural decomposition analysis and index. Energy Econ. 2003, 25, 39–64. [Google Scholar]
- Ang, B.W.; Su, B. Carbon emission intensity in electricity production: A global analysis. Energy Policy 2016, 94, 56–63. [Google Scholar] [CrossRef]
- Cruz, L.; Dias, J. Energy and CO2 intensity changes in the EU-27: Decomposition into explanatory effects. Sustain. Cities Soc. 2016, 26, 486–495. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.N.; Zou, I. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Shahiduzzaman, M.; Alam, K. Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach. Energy Policy 2013, 56, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Baležentis, A.; Baležentis, T.; Streimikiene, D. The energy intensity in Lithuania during 1995–2009: A LMDI approach. Energy Policy 2011, 39, 7322–7334. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Rodríguez-Arévalo, M.L. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renew. Sustain. Energy Rev. 2015, 48, 749–759. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zhang, J.; Li, J.P. Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Li, H.Q.; Lu, Y.; Zhang, J.; Wang, T.Y. Trends in road freight transportation carbon dioxide emissions and policies in China. Energy Policy 2013, 57, 99–106. [Google Scholar] [CrossRef]
- Moutinho, V.; Moreira, A.C.; Silva, P.M. The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renew. Sustain. Energy Rev. 2015, 50, 1485–1499. [Google Scholar] [CrossRef]
- Fu, B.T.; Wu, M.; Che, Y.; Wang, M.; Huang, Y.C.; Bai, Y. The strategy of a low-carbon economy based on the STIRPAT and SD models. Acta Ecol. Sin. 2015, 35, 76–82. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial Dynamics; MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Forrester, J.W. Lessons from system dynamics modelling. Syst. Dyn. Rev. 1987, 3, 136–149. [Google Scholar] [CrossRef]
- Radzicki, M.; Tauheed, L. In defense of system dynamics: A response to Professor Hayden. J. Econ. Issues 2009, 43, 1043–1061. [Google Scholar] [CrossRef]
- Naill, R.F. A system dynamics model for national energy policy planning. Syst. Dyn. Rev. 1992, 8, 1–19. [Google Scholar] [CrossRef]
- Bernardo, G.; D’Alessandro, S. Systems-dynamic analysis of employment and inequality impacts of low-carbon investments. Environ. Innov. Soc. Transit. 2016, 21, 123–144. [Google Scholar] [CrossRef]
- Qudrat-Ullah, H.; Seong, B.S. How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy 2010, 38, 2216–2224. [Google Scholar] [CrossRef]
- Li, F.J.; Dong, S.C.; Li, F. A system dynamics model for analyzing the eco-agriculture system with policy recommendations. Ecol. Model. 2012, 227, 34–45. [Google Scholar] [CrossRef]
- Ansari, N.; Seifi, A. A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios. Energy Policy 2013, 58, 75–89. [Google Scholar] [CrossRef]
- Saysel, A.K.; Hekimoğlu, M. Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach. Energy Policy 2013, 60, 675–686. [Google Scholar] [CrossRef]
- Li, F.J.; Dong, S.C.; Li, Z.H.; Li, Y.; Li, S.T.; Wan, Y.K. The improvement of CO2 emission reduction policies based on system dynamics method in traditional industrial region with large CO2 emission. Energy Policy 2012, 51, 683–695. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 4 April 2016).
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Shao, C.F.; Guan, Y.; Wan, Z.; Guo, C.X.; Chu, C.L.; Ju, M.T. Performance and decomposition analyses of carbon emissions from industrial energy consumption in Tianjin, China. J. Clean. Prod. 2013, 64, 590–601. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy. 2015. Available online: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 14 April 2015).
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2001; China Statistical Press: Beijing, China, 2001.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2002; China Statistical Press: Beijing, China, 2002.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2003; China Statistical Press: Beijing, China, 2003.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2004; China Statistical Press: Beijing, China, 2004.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2005; China Statistical Press: Beijing, China, 2005.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2006; China Statistical Press: Beijing, China, 2006.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2007; China Statistical Press: Beijing, China, 2007.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2008; China Statistical Press: Beijing, China, 2008.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2009; China Statistical Press: Beijing, China, 2009.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2010; China Statistical Press: Beijing, China, 2010.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2011; China Statistical Press: Beijing, China, 2011.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2012; China Statistical Press: Beijing, China, 2012.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2013; China Statistical Press: Beijing, China, 2013.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2014; China Statistical Press: Beijing, China, 2014.
- National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbooks 2015; China Statistical Press: Beijing, China, 2015.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2001; China Statistical Press: Beijing, China, 2001.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2002; China Statistical Press: Beijing, China, 2002.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2003; China Statistical Press: Beijing, China, 2003.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2004; China Statistical Press: Beijing, China, 2004.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2005; China Statistical Press: Beijing, China, 2005.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2006; China Statistical Press: Beijing, China, 2006.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2007; China Statistical Press: Beijing, China, 2007.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2008; China Statistical Press: Beijing, China, 2008.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2009; China Statistical Press: Beijing, China, 2009.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2010; China Statistical Press: Beijing, China, 2010.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2011; China Statistical Press: Beijing, China, 2011.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2012; China Statistical Press: Beijing, China, 2012.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2013; China Statistical Press: Beijing, China, 2013.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2014; China Statistical Press: Beijing, China, 2014.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbooks 2015; China Statistical Press: Beijing, China, 2015.
Period | ∆CEstr | ∆CEint | ∆CIlev | ∆CPstr | ∆CP |
---|---|---|---|---|---|
2000–2001 | −333.43 | −1224.98 | 1093.421 | 188.16 | 156.51 |
2001–2002 | −73.84 | −807.82 | 1730.825 | 172.10 | 148.64 |
2002–2003 | 34.35 | 1652.145 | 1285.22 | 156.15 | 151.61 |
2003–2004 | −364.00 | 2693.77 | 1234.703 | 122.90 | 168.97 |
2004–2005 | −372.69 | −1288.33 | 2091.431 | 104.84 | 183.26 |
2005–2006 | −365.16 | −719.75 | 2160.56 | 108.87 | 169.64 |
2006–2007 | −770.94 | −804.088 | 2548.018 | 148.00 | 172.78 |
2007–2008 | −789.09 | −1817.37 | 2109.393 | 96.84 | 172.74 |
2008–2009 | −403.36 | −1590.27 | 2862.664 | 72.99 | 167.65 |
2009–2010 | −664.04 | 327.6879 | 1988.50 | 31.42 | 172.01 |
2010–2011 | −162.68 | −105.153 | 2667.76 | −4.51 | 182.64 |
2011–2012 | −1085.80 | −2630.17 | 3918.236 | −22.84 | 196.23 |
2012–2013 | −410.99 | 453.2044 | 3033.81 | −49.41 | 203.76 |
2013–2014 | −572.69 | −1651.13 | 3837.076 | −57.83 | 228.58 |
Variable Type | Notation | Nomenclature | Unit |
---|---|---|---|
Level | P | Population | billion person |
UP | Urban population | billion person | |
PRE | Proportion of non-fossil energy | % | |
Rate | PGR | Population growth rate | ‰ |
UPGR | Urban population growth rate | % | |
PREGR | Proportion of non-fossil energy growth rate | % | |
Auxiliary | PG | Population growth | billion person |
UPG | Urban population growth | billion person | |
RP | Rural population | billion person | |
PUP | Proportion of urban population | % | |
PCDIUH | Per capital disposable income of urban households | yuan/person | |
PCDIRH | Per capital disposable income of rural households | yuan/person | |
DIUH | Disposable income of urban households | billion yuan | |
DIRH | Disposable income of rural households | billion yuan | |
EIUH | Energy intensity of urban households | Mtce/billion yuan | |
RIRH | Energy intensity of rural households | Mtce/billion yuan | |
ECUH | Energy consumption of urban households | Mtce | |
ECRH | Energy consumption of rural households | Mtce | |
TECA | Total energy consumption amount | Mtce | |
FEA | Fossil energy amount | Mtce | |
REA | Non-fossil energy amount | Mtce | |
PREG | Proportion of non-fossil energy growth | % | |
CA | Coal amount | Mtce | |
PC | Proportion of coal | % | |
PA | Petroleum amount | Mtce | |
PP | Proportion of petroleum | % | |
NGA | Natural gas amount | Mtce | |
PNG | Proportion of natural gas | % | |
CECC | CO2 emissions coefficient of coal | t·tce−1 | |
CECBC | CO2 emission caused by coal | Mt-CO2 | |
CECP | CO2 emissions coefficient of petroleum | t·tce−1 | |
CECBP | CO2 emission caused by petroleum | Mt-CO2 | |
CECNG | CO2 emissions coefficient of natural gas | t·tce−1 | |
CECBNG | CO2 emission caused by natural gas | Mt-CO2 | |
TCEA | Total CO2 emissions amount | Mt-CO2 |
Scenario | Year | Growth Rate of Population | Growth Rate of Urban Population | Disposable Income of Urban Households | Disposable Income of Rural Households | Growth Rate of the Share of Non-Fossil Energy | Energy Intensity of Urban Households | Energy Intensity of Rural Households |
---|---|---|---|---|---|---|---|---|
‰ | % | Ten Thousand Yuan | Ten Thousand Yuan | % | Mtce/Billion Yuan | Mtce/Billion Yuan | ||
BS | 2015 | 3.51 | 3.13 | 2.06 | 0.72 | 7.55 | 8.29 | 21.7 |
2016 | 4.19 | 2.72 | 2.19 | 0.78 | 7.19 | 8 | 20.55 | |
2017 | 4.06 | 2.65 | 2.32 | 0.85 | 7.03 | 7.73 | 19.24 | |
2018 | 3.94 | 2.58 | 2.46 | 0.92 | 6.87 | 7.46 | 17.77 | |
2019 | 3.81 | 2.52 | 2.6 | 0.99 | 6.71 | 7.21 | 16.14 | |
2020 | 3.69 | 2.46 | 2.75 | 1.07 | 6.55 | 6.96 | 14.35 | |
PS | 2015 | 6.26 | 2.17 | 2.1 | 0.7 | 7.59 | 8.33 | 21.55 |
2016 | 6.26 | 2.17 | 2.26 | 0.75 | 7.59 | 7.96 | 20.60 | |
2017 | 6.26 | 2.17 | 2.42 | 0.79 | 7.59 | 7.61 | 19.69 | |
2018 | 6.26 | 2.17 | 2.6 | 0.83 | 7.59 | 7.27 | 18.82 | |
2019 | 6.26 | 2.17 | 2.79 | 0.87 | 7.59 | 6.95 | 17.99 | |
2020 | 6.26 | 2.17 | 3 | 0.92 | 7.59 | 6.65 | 17.19 | |
AS-1 | 2015 | 3.51 | 3.29 | 2.06 | 0.72 | 7.55 | 8.29 | 21.7 |
2016 | 4.19 | 3.29 | 2.19 | 0.78 | 7.19 | 8 | 20.55 | |
2017 | 4.06 | 3.29 | 2.32 | 0.85 | 7.03 | 7.73 | 19.24 | |
2018 | 3.94 | 3.29 | 2.46 | 0.92 | 6.87 | 7.46 | 17.77 | |
2019 | 3.81 | 3.29 | 2.6 | 0.99 | 6.71 | 7.21 | 16.14 | |
2020 | 3.69 | 3.29 | 2.75 | 1.07 | 6.55 | 6.96 | 14.35 | |
AS-2 | 2015 | 3.51 | 3.29 | 2.06 | 0.72 | 12.87 | 8.29 | 21.7 |
2016 | 4.19 | 3.29 | 2.19 | 0.78 | 12.87 | 8 | 20.55 | |
2017 | 4.06 | 3.29 | 2.32 | 0.85 | 12.87 | 7.73 | 19.24 | |
2018 | 3.94 | 3.29 | 2.46 | 0.92 | 12.87 | 7.46 | 17.77 | |
2019 | 3.81 | 3.29 | 2.6 | 0.99 | 12.87 | 7.21 | 16.14 | |
2020 | 3.69 | 3.29 | 2.75 | 1.07 | 12.87 | 6.96 | 14.35 | |
AS-3 | 2015 | 3.51 | 3.29 | 2.06 | 0.72 | 12.87 | 8.19 | 21.18 |
2016 | 4.19 | 3.29 | 2.19 | 0.78 | 12.87 | 7.69 | 19.91 | |
2017 | 4.06 | 3.29 | 2.32 | 0.85 | 12.87 | 7.23 | 18.71 | |
2018 | 3.94 | 3.29 | 2.46 | 0.92 | 12.87 | 6.79 | 17.58 | |
2019 | 3.81 | 3.29 | 2.6 | 0.99 | 12.87 | 6.38 | 16.52 | |
2020 | 3.69 | 3.29 | 2.75 | 1.07 | 12.87 | 6.00 | 15.52 |
Year | Energy Consumption | CO2 Emissions | ||||
---|---|---|---|---|---|---|
Real Data (Mtce) | Simulated Data (Mtce) | Error (%) | Real Data (Mt-CO2) | Simulated Data (Mt-CO2) | Error (%) | |
2000 | 92.02 | 92.02 | 0.00 | 225.84 | 225.84 | 0.00 |
2001 | 93.03 | 92.24 | 0.84 | 224.64 | 223.64 | 0.45 |
2002 | 98.17 | 97.45 | 0.74 | 236.34 | 234.32 | 0.86 |
2003 | 111.51 | 110.81 | 0.63 | 269.13 | 266.73 | 0.89 |
2004 | 129.11 | 128.44 | 0.51 | 307.64 | 306.16 | 0.48 |
2005 | 133.62 | 133.00 | 0.47 | 314.82 | 313.84 | 0.31 |
2006 | 141.49 | 140.83 | 0.46 | 328.36 | 326.53 | 0.56 |
2007 | 151.18 | 150.42 | 0.51 | 341.30 | 339.73 | 0.46 |
2008 | 153.51 | 152.96 | 0.36 | 339.03 | 338.82 | 0.06 |
2009 | 160.06 | 159.51 | 0.34 | 350.12 | 347.96 | 0.62 |
2010 | 171.71 | 171.13 | 0.34 | 368.68 | 365.74 | 0.80 |
2011 | 184.71 | 184.19 | 0.28 | 394.46 | 389.66 | 1.22 |
2012 | 191.95 | 191.42 | 0.27 | 398.22 | 398.01 | 0.05 |
2013 | 209.13 | 208.62 | 0.24 | 430.52 | 425.41 | 1.19 |
2014 | 221.47 | 220.93 | 0.25 | 448.36 | 444.03 | 0.97 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, G.; Guo, X.; Fu, J. An Analysis Based on SD Model for Energy-Related CO2 Mitigation in the Chinese Household Sector. Energies 2016, 9, 1062. https://doi.org/10.3390/en9121062
Chen X, Wang G, Guo X, Fu J. An Analysis Based on SD Model for Energy-Related CO2 Mitigation in the Chinese Household Sector. Energies. 2016; 9(12):1062. https://doi.org/10.3390/en9121062
Chicago/Turabian StyleChen, Xingpeng, Guokui Wang, Xiaojia Guo, and Jinxiu Fu. 2016. "An Analysis Based on SD Model for Energy-Related CO2 Mitigation in the Chinese Household Sector" Energies 9, no. 12: 1062. https://doi.org/10.3390/en9121062
APA StyleChen, X., Wang, G., Guo, X., & Fu, J. (2016). An Analysis Based on SD Model for Energy-Related CO2 Mitigation in the Chinese Household Sector. Energies, 9(12), 1062. https://doi.org/10.3390/en9121062