Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network
Abstract
:1. Introduction
2. Architecture of RBFNN
3. AALA-SVR-RBFNN for STLF
3.1. SVR-Based Initial Parameters Estimation of RBFNN
3.2. AALA-Based SVR-RBFNN
3.3. Particle Swarm Optimization
3.4. Procedure of Hybrid Learning Algorithm
Algorithm 1. AALA-SVR-RBFNN |
|
4. Case Studies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bozic, M.; Stojanovic, M.; Stajic, Z.; Tasic, D. A New Two-Stage Approach to Short Term Electrical Load Forecasting. Energies 2013, 6, 2130–2148. [Google Scholar] [CrossRef]
- Hernandez, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J. Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies 2013, 6, 1385–1408. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems. Energies 2011, 4, 488–503. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, H.; Wu, Y.; Dong, Y. Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm. Energy 2015, 81, 627–644. [Google Scholar] [CrossRef]
- Shahidehpour, M.; Yamin, H.; Li, Z. Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Christiaanse, W.R. Short term load forecasting using general exponential smoothing. IEEE Trans. Power Appar. Syst. 1971, 90, 900–911. [Google Scholar] [CrossRef]
- Dudek, G. Pattern-based local linear regression models for short-term load forecasting. Electr. Power Syst. Res. 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Darbellay, G.A.; Slama, M. Forecasting the short-term demand for electricity. Int. J. Forecast. 2000, 16, 71–83. [Google Scholar] [CrossRef]
- Zheng, T.; Girgis, A.A.; Makram, E.B. A hybrid wavelet-Kalman filter method for load forecasting. Electr. Power Syst. Res. 2000, 54, 11–17. [Google Scholar] [CrossRef]
- Gouthamkumar, N.; Sharma, V.; Naresh, R. Non-dominated sorting disruption-based gravitational search algorithm with mutation scheme for multi-objective short-term hydrothermal scheduling. Electr. Power Compon. Syst. 2016, 44, 990–1004. [Google Scholar]
- Mori, H.; Kobayashi, H. Optimal fuzzy inference for short-term load forecasting. IEEE Trans. Power Syst. 1996, 11, 390–396. [Google Scholar] [CrossRef]
- El-Telbany, M.; El-Karmi, F. Short-term forecasting of Jordanian electricity demand using particle swarm optimization. Expert Syst. Appl. 2008, 78, 425–433. [Google Scholar] [CrossRef]
- Hong, W.C. Electric load forecasting by support vector model. Appl. Math. Model. 2009, 33, 2444–2454. [Google Scholar] [CrossRef]
- Niu, M.F.; Sun, S.L.; Wu, J.; Yu, L.; Wang, J. An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting. Appl. Math. Model. 2016, 40, 4079–4093. [Google Scholar] [CrossRef]
- Bashir, Z.A.; El-Hawary, M.E. Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks. IEEE Trans. Power Syst. 2009, 24, 20–27. [Google Scholar] [CrossRef]
- Panapakidis, I.P. Application of hybrid computational intelligence models in short-term bus load forecasting. Expert Syst. Appl. 2016, 54, 105–120. [Google Scholar] [CrossRef]
- Ceperic, E.; Ceperic, V.; Baric, A. A strategy for short-term load forecasting by support vector regression machines. IEEE Trans. Power Syst. 2013, 28, 4356–4364. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Goel, L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr. Power Syst. Res. 2015, 122, 96–103. [Google Scholar] [CrossRef]
- Ko, C.N.; Lee, C.M. Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy 2013, 49, 413–422. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, D.; Gao, L.; Kong, Z. Using an adaptive self-tuning approach to forecast power loads. Neurocomputing 2008, 71, 559–563. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Niu, D.; Tan, Z. An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl. Energy 2012, 94, 65–70. [Google Scholar] [CrossRef]
- Attoh-Okine, N.O. Analysis of learning rate and momentum term in backpropagation neural network algorithm trained to predict pavement performance. Adv. Eng. Softw. 1999, 30, 291–302. [Google Scholar] [CrossRef]
- Nied, A.; Seleme, S.I., Jr.; Parma, G.G.; Menezes, B.R. On-line neural training algorithm with sliding mode control and adaptive learning rate. Neurocomputing 2007, 70, 2687–2691. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Li, H.; Zhang, S.-W. The improved training algorithm of back propagation neural network with self-adaptive learning rate. In Proceedings of the International Conference on Computational Intelligence and Natural Computing, Wuhan, China, 6–7 June 2009; pp. 73–76.
- Suresh, S.; Savitha, R.; Sundararajan, N. Sequential learning algorithm for complex-valued self-regulating resource allocation network-CSRAN. IEEE Trans. Neural Netw. 2011, 22, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Atiya, A.F.; Parlos, A.G.; Ingber, L. A reinforcement learning method based on adaptive simulated annealing. In Proceedings of the 2003 IEEE 46th Midwest Symposium on Circuits and Systems, Cairo, Egypt, 27–30 December 2004; Volume 1, pp. 121–124.
- Kuo, S.S.; Ko, C.N. Adaptive annealing learning algorithm-based robust wavelet neural networks for function approximation with outliers. Artif. Life Robot. 2014, 19, 186–192. [Google Scholar] [CrossRef]
- Ko, C.N. Identification of nonlinear systems using RBF neural networks with time-varying learning algorithm. IET Signal Process. 2012, 6, 91–98. [Google Scholar] [CrossRef]
- Ko, C.N. Reinforcement radial basis function neural networks with an adaptive annealing learning algorithm. Appl. Math. Model. 2013, 221, 503–513. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistic Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Chuang, C.C.; Jeng, J.T.; Lin, P.T. Annealing robust radial basis function networks for function approximation with outliers. Neurocomputing 2004, 56, 123–139. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Wu, C.J.; Jeng, J.T.; Ko, C.N. Identification of MIMO systems using radial basis function networks with hybrid learning algorithm. Appl. Math. Comput. 2009, 213, 184–196. [Google Scholar] [CrossRef]
- Chuang, C.C.; Su, S.F.; Hsiao, C.C. The annealing robust backpropagation (BP) learning algorithm. IEEE Trans. Neural Netw. 2000, 11, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Alrefaei, M.H.; Diabat, A.H. A simulated annealing technique for multi-objective simulation optimization. Appl. Math. Comput. 2009, 215, 3029–3035. [Google Scholar] [CrossRef]
- Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–983. [Google Scholar] [CrossRef]
- Ingber, L. Adaptive Simulated Annealing (ASA); Lester Ingber Research: McLean, VA, USA, 1993. [Google Scholar]
- Shieh, H.L.; Kuo, C.C.; Chiang, C.M. Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl. Math. Comput. 2011, 218, 4365–4383. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
- Elbeltagi, E.; Hegazy, T.; Grierson, D. Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 2005, 19, 43–53. [Google Scholar] [CrossRef]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef]
Case | Data Type | Training Data | Testing Data |
---|---|---|---|
1 | Weekdays | 2 February–15 March | 16 March |
2 | Weekends | 12 May–27 October | 3 November |
3 | Holidays | 1 July–9 December | 16 December |
Case | AALA | ARLA () | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 1.5 | 1 | 0.5 | 0.1 | 0.05 | 0.02 | 0.01 | 0.005 | 0.002 | |||
1 | 0.05 | 0.0072774 | 0.010025 | 0.009653 | 0.009227 | 0.008514 | 0.008452 | 0.008386 | 0.008379 | 0.008426 | 0.008554 | 0.008808 |
2 | 0.06 | 0.0109520 | 0.015183 | 0.014111 | 0.012962 | 0.011622 | 0.011525 | 0.011596 | 0.011681 | 0.011708 | 0.011861 | 0.012267 |
3 | 0.05 | 0.0097116 | 0.012594 | 0.011968 | 0.01132 | 0.011636 | 0.010698 | 0.010365 | 0.010186 | 0.010104 | 0.010127 | 0.01018 |
Method | MAPE | SDAPE |
---|---|---|
DEKF-RBFNN [19] | 0.79 | 0.6 |
GRD-RBFNN [19] | 0.84 | 0.6 |
SVR-DEKF-RBFNN [19] | 0.6 | 0.37 |
ARLA-SVR-RBFNN | 0.43 | 0.34 |
AALA-SVR-RBFNN | 0.41 | 0.34 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-M.; Ko, C.-N. Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network. Energies 2016, 9, 987. https://doi.org/10.3390/en9120987
Lee C-M, Ko C-N. Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network. Energies. 2016; 9(12):987. https://doi.org/10.3390/en9120987
Chicago/Turabian StyleLee, Cheng-Ming, and Chia-Nan Ko. 2016. "Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network" Energies 9, no. 12: 987. https://doi.org/10.3390/en9120987
APA StyleLee, C. -M., & Ko, C. -N. (2016). Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network. Energies, 9(12), 987. https://doi.org/10.3390/en9120987