Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production
Abstract
:1. Introduction
Meals | Production (MT) (Million tons per year) | Current disposal/utilization | ||
---|---|---|---|---|
2011 | 2012 | 2013 | ||
Coffee (a) | 6.04 | 6.52 | 6.31 | Fertilizer [21,22]; combustion (Silva et al. [22], 1998) |
Copra | 1.82 | 1.95 | 1.85 | Feed [23] |
Cottonseed | 15.64 | 15.64 | 15.51 | Feed [24] |
Palm Kernel | 7.22 | 7.76 | 8.29 | Paper industry [25] |
Rapeseed | 35.65 | 36.95 | 38.62 | Feed [26] |
Soybean | 180.42 | 180.95 | 188.15 | Feed [27]; functional food (Wang et al. [27], 2013) |
Total | 246.79 | 249.77 | 258.73 | - |
2. Results and Discussion
2.1. Recoverable Oil Content in the Industrial Food Wastes
2.2. Properties of Fatty-Acid Methyl Esters and Dimethyl Ether-Extracted Residues
Analysis | Coffee Grounds | Soybean Cake | Rapeseed Cake | |
---|---|---|---|---|
(wt % dry basis) | Residue | FAMEs | Residue | Residue |
Ash yield | 1.9 | - | - | - |
Volatile matter | 81.1 | - | - | - |
Fixed carbon | 17.0 | - | - | - |
C | 51.5 | - | - | - |
H | 6.97 | - | - | - |
N | 2.43 | - | - | - |
O | 37.1 | - | - | - |
S | 0.15 | - | - | - |
P | 0.09 | - | 0.79 | 1.37 |
K | 0.22 | - | 2.29 | 1.37 |
N | 2.51 | - | 8.73 | 6.80 |
Kinematic viscosity at 40 °C (mm2·s−1) | - | 4.81 | - | - |
Pour point (°C) | - | −7.5 | - | - |
Higher heating value (HHV) (MJ·kg−1) | 21.1 | 40.8 | - | - |
2.3. Possible Application of the Dimethyl Ether Extraction Method for Industrial Food Wastes
3. Materials and Methods
3.1. Materials
3.2. Dimethyl Ether extraction
3.3. Transesterification of Bio-Oil
3.4. Analysis of Fuel Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
IFWs | Industrial food wastes |
CRIEPI | Central Research Institute of Electric Power Industry |
DME | Dimethyl ether |
BDF | Biodiesel fuel |
FAMEs | Fatty-acid methyl esters |
MUFA | Mono-unsaturated fatty acid |
GC-MS | Gas chromatography-mass spectrometrys |
References
- Thanh, L.T.; Okitsu, K.; Boi, L.V.; Maeda, Y. Catalytic technologies for biodiesel fuel production and utilization of glycerol: A review. Catalysts 2012, 2, 191–222. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Biofuels for transport. Available online: http://www.cti2000.it/Bionett/All-2004-004%20IEA%20biofuels%20report.pdf (accessed on 11 November 2014).
- Dagostin, J.L.A.; Carpiné, D.; Corazza, M.L. Extraction of soybean oil using ethanol and mixtures with alkyl esters (biodiesel) as co-solvent: Kinetics and thermodynamics. Ind. Crops Prod. 2015, 74, 69–75. [Google Scholar] [CrossRef]
- Modiba, E.; Osifo, P.; Rutto, H. Biodiesel production from baobab (Adansonia digitate L.) seed kernel oil and its fuel properties. Ind. Crops Prod. 2014, 59, 50–54. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Q.; Chang, F.; Pan, H.; Liu, X.F.; Li, H.; Hu, D.Y.; Yang, S. Production and fuel properties of biodiesel from firmiana platanifolia L.f. as a potential non-food oil source. Ind. Crops Prod. 2015, 76, 768–771. [Google Scholar] [CrossRef]
- Liam, B.; Philip, O. Biofuels from microalgae—A review of technologies for production processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar]
- Grima, E.M.; Belarbi, E.-H.; Fernàndez, F.G.A.; Medina, A.R.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef]
- Romano, S.D.; Sorichetti, P.A. Dielectric Spectroscopy in Biodiesel Production and Characterization; Springer-Verlag: London, UK, 2011. [Google Scholar]
- Zhou, A.; Thomson, E. The development of biofuels in Asia. Appl. Energy 2009, 86. [Google Scholar] [CrossRef]
- Li, P.; Makino, H. Liquefied dimethyl ether: An energy-saving, green extraction solvent. In Alternative Solvents for Natural Products Extraction; Chemat, F., Abert, V.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 91–106. [Google Scholar]
- Holldorff, H.; Knapp, H. Binary vapor-liquid-liquid equilibrium of dimethyl ether-water and mutual solubilities of methyl chloride and water: Experimental results and data reduction. Fluid Phase Equilib. 1988, 44, 195–209. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y.; Lemmon, E.W. An equation of state for the thermodynamic properties of dimethyl ether. J. Phys. Chem. Ref. Data 2011, 40. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion of the panel on food contact materials, enzymes, flavourings and processing aids (CEF). EFSA J. 2009, 984, 1–13. Available online: http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/1305.pdf (accessed on 23 July 2009). [Google Scholar]
- Kanda, H.; Li, P.; Makino, H. Production of decaffeinated green tea leaves using liquefied dimethyl ether. Food Bioprod. Process. 2013, 91, 376–380. [Google Scholar] [CrossRef]
- Kanda, H.; Li, P.; Goto, M.; Makino, H. Energy-saving lipid extraction from wet Euglena gracilis by the low-boiling-point solvent dimethyl ether. Energies 2015, 8, 610–620. [Google Scholar] [CrossRef]
- Kanda, H.; Li, P. Simple extraction method of green crude from natural blue-green microalgae by dimethyl ether. Fuel 2011, 90, 1264–1266. [Google Scholar] [CrossRef]
- Li, P.; Kanda, H.; Makino, H. Simultaneous production of bio-solid fuel and bio-crude from vegetal biomass using liquefied dimethyl ether. Fuel 2014, 116, 370–376. [Google Scholar] [CrossRef]
- Seth, S.; Agrawal, Y.C.; Ghosh, P.K.; Jayas, D.S.; Singh, B.P.N. Oil extraction rates of soybean using isopropyl alcohol as solvent. Biosyst. Eng. 2007, 97, 209–217. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Carneiro, L.M.; Silva, J.P.A.; Roberto, I.C.; Teixeira, J.A. A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef]
- United States Department of Agriculture, USDA. Available online: http://apps.fas.usda.gov/psdonline/psdReport.aspx?hidReportRetrievalName=Table+01%3a+Major+Oilseeds%3a+World+Supply+and+Distribution+%28Commodity+View%29++++++++++++++++++++++++++++&hidReportRetrievalID=531&hidReportRetrievalTemplateID=5 (accessed on 1 April 2015).
- Zuorro, A.; Lavecchia, R. Polyphenols and energy recovery from spent coffee grounds. Chem. Eng. Trans. 2011, 25, 285–290. [Google Scholar]
- Silva, M.A.; Nebra, S.A.; Silva, M.J.M.; Sanchez, C.G. The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenergy 1998, 14, 457–467. [Google Scholar] [CrossRef]
- O'Doherty, J.V.; McKeon, M.P. The use of expeller copra meal in grower and finisher pig diets. Livest. Prod. Sci. 2000, 67, 55–65. [Google Scholar] [CrossRef]
- Fombad, R.B.; Bryant, M.J. An evaluation of the use of cottonseed cake in the diet of growing pigs. Trop. Anim. Health Prod. 2004, 36, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sulaima, O.; Hashim, R.; Peng, L.C.; Singh, R.P. Using biomass residues from oil palm industry as a raw material for pulp and paper industry: Potential benefits and threat to the environment. Environ. Dev. Sustain. 2013, 15, 367–383. [Google Scholar] [CrossRef]
- Huuskonen, A.; Huhtanen, P.; Joki-Tokola, E. Evaluation of protein supplementation for growing cattle fed grass silage-based diets: A meta-analysis. Animal 2014, 8, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Sun, Y.; Dai, Y. ACE-Inhibitory peptide isolated from fermented soybean meal as functional food. Int. J. Food Eng. 2013, 9, 1–8. [Google Scholar] [CrossRef]
- Cruz, M.M.; Cardoso, L.; Fernandes, M.; Oliveira, E.; Mendes, P.; Baptista, S. Espresso coffee residues: A valuable source of unextracted compounds. J. Agric. Food Chem. 2012, 60, 7777–7784. [Google Scholar] [CrossRef] [PubMed]
- Wiemer, H.J.; Altes, F.W.K.A. Small Scale Processing of Oilfruits and Oilseeds; Gesellschaft fur Technische Zusammenarbeit (GTZ): Eschborn, Germany, 1989. [Google Scholar]
- Li, S.; Zhu, D.; Li, K.; Yang, Y.; Lei, Z.; Zhang, Z. Soybean curd residue: Composition, utilization, and related limiting factors. ISRN Ind. Eng. 2013, 2013. [Google Scholar] [CrossRef]
- Suzuki, T.; Nishikawa, C.; Seta, K.; Shigeno, T.; Nakajima-Kambe, T. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions. New Biotechnol. 2014, 31, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, K. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 2006, 83, 823–833. [Google Scholar]
- Jenkins, R.W.; Stageman, N.E.; Fortune, C.M.; Chuc, C.J. Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy Fuels 2014, 28, 1166–1174. [Google Scholar] [CrossRef]
- Ruane, J.; Sonnino, A.; Steduto, P.; Deane, C. Coping with water scarcity: What role for biotechnologies? FAO Land and Water Discussion Paper No. 7. Available online: http://www.fao.org/docrep/011/i0487e/i0487e00.htm (accessed on 28 January 2009).
- Singh, A.K.; Mahato, M.K.; Neogi, B.; Tewary, B.K.; Sinha, A. Environmental geochemistry and quality assessment of mine water of Jharia coalfield, India. Environ. Earth Sci. 2012, 65, 49–56. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakuragi, K.; Li, P.; Otaka, M.; Makino, H. Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production. Energies 2016, 9, 106. https://doi.org/10.3390/en9020106
Sakuragi K, Li P, Otaka M, Makino H. Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production. Energies. 2016; 9(2):106. https://doi.org/10.3390/en9020106
Chicago/Turabian StyleSakuragi, Kiyoshi, Peng Li, Maromu Otaka, and Hisao Makino. 2016. "Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production" Energies 9, no. 2: 106. https://doi.org/10.3390/en9020106
APA StyleSakuragi, K., Li, P., Otaka, M., & Makino, H. (2016). Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production. Energies, 9(2), 106. https://doi.org/10.3390/en9020106