Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model
Abstract
:1. Introduction
2. Auxiliary Power Unit Operating Point Multi-objective Optimization Model
2.1. Features of the Auxiliary Power Units
2.2. Optimization Objectives
2.3. Constraints
3. Solving the Auxiliary Power Units Operating Point Multi-Objective Optimization Model
3.1. Multi-Objective Optimization
- (1)
- Obtain the Pareto set or the well-distributed discrete approximation of the Pareto set of the MOP by a specific multi-objective optimization approach;
- (2)
- Choose one best compromise solution out of the Pareto set by a decision making method.
3.2. Multi-Objective Particle Swarm Optimization
Algorithm 1: MOPSO (k, s, N, , d, μ, , , ) |
k, number of the objective functions; |
s, number of the independent variables; |
N, population size; |
, maximum size of EA; |
d, number of grids in each dimension of the objective space; |
μ, inertia weight, ; |
, acceleration coefficient 1; |
, acceleration coefficient 2; |
, maximum iteration number. |
|
3.3. Multi-Objective Decision Making
4. Off-Line Optimization
4.1. Global Optimization
4.2. Specific Power Optimization
5. Bench Experiment and Results Analysis
5.1. Experimental Facility and Process
- (1)
- Autobox: A rapid control prototyping toolkit. It is a real-time controller with real I/O interfaces. Here, it acts as an APU control unit;
- (2)
- AVL puma open: A test bench automation system. It offers an integrated solution for data acquisition and experiment procedure management. Here, it receives speed/torque command from the AutoBox through controller area network (CAN) bus and manipulates the dynamometer/engine works in “T/N” mode (defined by AVL, it means that the dynamometer works in torque control mode and engine works in speed control mode);
- (3)
- Dynamometer: An AC electric dynamometer. Here, it serves as a controllable load of the engine.
- (4)
- Control cabinet: An electric device that is used to drive the electric dynamometer according to the torque command of the AVL puma open;
- (5)
- AVL 735: Fuel mass flow meter. It reports the FC of the engine;
- (6)
- AVL 553: Coolant temperature regulating system. It is used to regulate the coolant temperature to 20 C before each driving cycle;
- (7)
- AMA i60 (a trade mark): Exhaust analysis device. It reports the HC, CO and NO emissions of the engine;
- (8)
- mass flow meter (MAF): Air mass flow meter. It reports the engine intake air mass flow rate, which is a parameter used in exhaust emission data processing;
- (9)
- Sensor box: A integrated sensor signal process unit. Here, it used to collect sensor signals such as temperature and humidity of the engine intake air;
- (10)
- TWC: Three-way catalytic converter. It is a engine emissions after-treatment devices that converts toxic HC, CO and NO emissions to less toxic pollutants.
Components | Parameters | Values |
---|---|---|
Engine | Engine displacement (L)/Peak power (kW) | 1.0/42 |
Min/max speed (rpm) | 998/5700 | |
Generator | Type | PMSM |
Rated power (kW)/max speed (rpm) | 32/6000 | |
Power battery | Type/max continuous discharge current (C) | LiFePO/2C |
Nominal voltage (V)/Capacity (Ah) | 330/10 | |
Driving motor | Type | IM |
Peak power (kW)/max speed (rpm) | 75/9000 | |
Others | Front area () | 1.835 |
Aerodynamic drag coefficient | 0.28 | |
Rolling resistance coefficient | 0.009 | |
Wheel radius (r/m) | 0.305 | |
Wheel base/wheel tread (mm) | 2600/1470 | |
Vehicle mass/gross mass (kg) | 1006/1242 |
5.2. Experimental Results Analysis
Cycles | FC (L/100 km) | HC (g/km) | CO (g/km) | NO (g/km) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOA | MOA | % | SOA | MOA | % | SOA | MOA | % | SOA | MOA | % | |
NEDC | 6.24 | 6.51 | 4.33 | 0.106 | 0.095 | −10.38 | 1.077 | 0.994 | −7.71 | 0.094 | 0.079 | −15.96 |
FTP | 6.91 | 7.16 | 3.62 | 0.116 | 0.106 | −8.62 | 1.089 | 1.038 | −4.68 | 0.118 | 0.095 | −19.49 |
HWFET | 4.90 | 5.06 | 3.27 | 0.069 | 0.059 | −14.49 | 0.862 | 0.833 | −3.36 | 0.076 | 0.066 | −13.16 |
Average | 6.02 | 6.24 | 3.74 | 0.097 | 0.087 | −11.16 | 1.009 | 0.955 | −5.25 | 0.096 | 0.080 | −16.20 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fiengo, G.; Glielmo, L.; Vasca, F. Control of auxiliary power unit for hybrid electric vehicles. IEEE Trans. Control Syst. Technol. 2007, 15, 1122–1130. [Google Scholar] [CrossRef]
- Castel-Branco, A.P.; Ribau, J.P.; Silva, C.M. Taxi fleet renewal in cities with improved hybrid powertrains: Life cycle and sensitivity analysis in Lisbon case study. Energies 2015, 8, 9509–9540. [Google Scholar] [CrossRef]
- Trovao, J.P.F.; Santos, V.D.N.; Antunes, C.H.; Pereirinha, P.G.; Jorge, H.M. A Real-time energy management architecture for multisource electric vehicles. IEEE Trans. Ind. Electron. 2015, 62, 3223–3233. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, J.; Egardt, B.; Cao, D. Advanced power-source integration in hybrid electric vehicles: Multi-criteria optimization approach. IEEE Trans. Ind. Electron. 2015, 62, 7847–7858. [Google Scholar] [CrossRef]
- Mapelli, F.L.; Tarsitano, D.; Mauri, M. Plug-in hybrid electric vehicle: Modeling, prototype realization, and inverter losses reduction analysis. IEEE Trans. Ind. Electron. 2010, 57, 598–607. [Google Scholar] [CrossRef]
- He, B.; Yang, M. Robust LPV control of diesel auxiliary power unit for series hybrid electric vehicles. IEEE Trans. Power Electron. 2006, 21, 791–798. [Google Scholar]
- Gokasan, M.; Bogosyan, S.; Goering, D.J. Sliding mode based powertrain control for efficiency improvement in series hybrid-electric vehicles. IEEE Trans. Power Electron. 2006, 21, 779–790. [Google Scholar] [CrossRef]
- Konev, A.; Lezhnev, L.; Kolmanovsky, I. Control Strategy Optimization for a Series Hybrid Vehicle. SAE Tech. Pap. 2006. [Google Scholar] [CrossRef]
- Peng, J.; Fan, H.; He, H.; Pan, D. A rule-based energy management strategy for a plug-in hybrid school bus based on a controller area network bus. Energies 2015, 8, 5122–5142. [Google Scholar] [CrossRef]
- Wang, X.; He, H.; Sun, F.; Sun, X.; Tang, H. Comparative study on different energy management strategies for plug-in hybrid electric vehicles. Energies 2013, 6, 5656–5675. [Google Scholar] [CrossRef]
- Salmasi, F.R. Control strategies for hybrid electric vehicles: Evolution, classification, comparison, and future trends. IEEE Trans. Veh. Technol. 2007, 56, 2393–2404. [Google Scholar] [CrossRef]
- Shankar, R.; Marco, J.; Assadian, F. The novel application of optimization and charge blended energy management control for component downsizing within a plug-in hybrid electric vehicle. Energies 2012, 5, 4892–4923. [Google Scholar] [CrossRef]
- Williamson, S.S.; Rathore, A.K.; Musavi, F. Industrial electronics for electric transportation: Current state-of-the-art and future challenges. IEEE Trans. Ind. Electron. 2015, 62, 3021–3032. [Google Scholar] [CrossRef]
- Wang, X.; He, H.; Sun, F.; Zhang, J. Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles. Energies 2015, 8, 3225–3244. [Google Scholar] [CrossRef]
- Johnson, V.H.; Wipke, K.B.; Rausen, D.J. HEV Control Strategy for Real-Time Optimization of Fuel Economy And Emissions. SAE Tech. Pap. 2000. [Google Scholar] [CrossRef]
- Ehsani, M.; Gao, Y.; Emadi, A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, 2nd ed.; CRC Press: New York, NY, USA, 2010. [Google Scholar]
- Gao, J.; Sun, F.; He, H.; Zhu, G.G.; Strangas, E.G. A comparative study of supervisory control strategies for a series hybrid electric vehicle. In Proceedings of the IEEE Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–7.
- Barsali, S.; Miulli, C.; Possenti, A. A control strategy to minimize fuel consumption of series hybrid electric vehicles. IEEE Trans. Energy Convers. 2004, 19, 187–195. [Google Scholar] [CrossRef]
- Sezer, V.; Gokasan, M.; Bogosyan, S. A novel ECMS and combined cost map approach for high-efficiency series hybrid electric vehicles. IEEE Trans. Veh. Technol. 2011, 60, 3557–3570. [Google Scholar] [CrossRef]
- Yoo, H.; Sul, S.K.; Park, Y.; Jeong, J. System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries. IEEE Trans. Ind. Appl. 2008, 44, 108–114. [Google Scholar] [CrossRef]
- Li, Y.; Pedroni, N.; Zio, E. A Memetic Evolutionary Multi-Objective Optimization Method for Environmental Power Unit Commitment. IEEE Trans. Power Syst. 2013, 28, 2660–2669. [Google Scholar] [CrossRef]
- Goudos, S.; Gotsis, K.; Siakavara, K.; Vafiadis, E.; Sahalos, J. A Multi-objective approach to Subarrayed Linear Antenna Arrays Design Based on Memetic Differential Evolution. IEEE Trans. Antennas Propag. 2013, 61, 3042–3052. [Google Scholar] [CrossRef]
- Salinas, S.; Li, M.; Li, P. Multi-objective optimal energy consumption scheduling in smart grids. IEEE Trans. Smart Grid 2013, 4, 341–348. [Google Scholar] [CrossRef]
- Ashby, M. Multi-objective optimization in material design and selection. Acta Mater. 2000, 48, 359–369. [Google Scholar] [CrossRef]
- Xue, X.; Cheng, K.W.E.; Ng, T.W.; Cheung, N.C. Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles. IEEE Trans. Ind. Electron. 2010, 57, 2980–2987. [Google Scholar] [CrossRef]
- Maciel, R.S.; Rosa, M.; Miranda, V.; Padilha-Feltrin, A. Multi-objective evolutionary particle swarm optimization in the assessment of the impact of distributed generation. Electr. Power Syst. Res. 2012, 89, 100–108. [Google Scholar] [CrossRef]
- Pareto, V. Cours D’economie Politique; Librairie Droz: Geneva, Switzerland, 1964. (In Italian) [Google Scholar]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Kahraman, C.; Ruan, D.; Dogan, I. Fuzzy group decision-making for facility location selection. Inf. Sci. 2003, 157, 135–153. [Google Scholar] [CrossRef]
- Renaud, J.; Thibault, J.; Lanouette, R.; Kiss, L.N.; Zaras, K.; Fonteix, C. Comparison of two multicriteria decision aid methods: Net Flow and Rough Set Methods in a high yield pulping process. Eur. J. Oper. Res. 2007, 177, 1418–1432. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Lamont, G.B.; Van Veldhuisen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: New York, NY, USA, 2007. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December; 1995; pp. 1942–1948. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; He, Z.; Liu, D.; Xu, B. Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model. Energies 2016, 9, 90. https://doi.org/10.3390/en9020090
Shen Y, He Z, Liu D, Xu B. Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model. Energies. 2016; 9(2):90. https://doi.org/10.3390/en9020090
Chicago/Turabian StyleShen, Yongpeng, Zhendong He, Dongqi Liu, and Binjie Xu. 2016. "Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model" Energies 9, no. 2: 90. https://doi.org/10.3390/en9020090
APA StyleShen, Y., He, Z., Liu, D., & Xu, B. (2016). Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model. Energies, 9(2), 90. https://doi.org/10.3390/en9020090