NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS): Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications
Abstract
:1. Introduction
2. Design of the NIMBUS
2.1. General Operation
2.2. Shortcomings of the First Prototype
2.3. Upgrades and Improvements
2.3.1. Switch
2.3.2. Charge Pump
2.3.3. Timer
2.3.4. Synchronization Circuit
3. Power Simulations
3.1. Used Models
3.2. Simulations
4. Implementation and Measurements
5. Discussion
5.1. Comparison with the State-of-the-Art
5.2. Conclusion and Future
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Silvestre, S.; Chouder, A. Effects of Shadowing on Photovoltaic Module Performance. Prog. Photovolt. Res. Appl. 2008, 16, 141–149. [Google Scholar] [CrossRef]
- García, M.C.A.; Herrmann, W.; Böhmer, W.; Proisy, B. Thermal and Electrical Effects Caused by Outdoor Hot-Spot Testing in Associations of Photovoltaic Cells. Prog. Photovolt. Res. Appl. 2003, 11, 293–307. [Google Scholar] [CrossRef]
- Hermann, W.; Wiesner, W.; Vaaßen, W. Hot Spot Investigations on PV Modules—New Concepts for a Test Standard and Consequences for Module Design with Respect to Bypass Diodes. In Proceedings of the 26th IEEE Photovoltaic Specialist Conference, Anaheim, CA, USA, 29 September–3 October 1997; pp. 1129–1132.
- Roche, D.; Outhred, H.; Kaye, R.J. Analysis and Control of Mismatch Power Loss in Photovoltaic Arrays. Prog. Photovolt. Res. Appl. 1995, 3, 115–127. [Google Scholar] [CrossRef]
- Villa, L.F.L.; Picault, D.; Raison, B. Maximizing the Power Output of Partially Shaded Photovoltaic Plants Through Optimization of the Interconnections among Its Modules. IEEE J. Photovolt. 2012, 2, 154–163. [Google Scholar] [CrossRef]
- Karatepe, E.; Boztepe, M.; Çolak, M. Development of a Suitable Model for Characterizing Photovoltaic Arrays with Shaded Solar Cells. Sol. Energy 2007, 81, 977–992. [Google Scholar] [CrossRef]
- Bergveld, H.; Bütcker, D.; Castello, C.; Doorn, T.; Jong, A.D.; Otten, R.V.; Waal, K.D. Module-Level DC/DC Conversion for Photovoltaic Systems. In Proceedings of the IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–9.
- Petrone, G.; Spagnuolo, G.; Zhao, Y.; Lehman, B.; Paja, C.A.R.; Gutierrez, M.L.O. Control of Photovoltaic Arrays: Dynamical Reconfiguration for Fighting Mismatched Conditions and Meeting Load Requests. IEEE Ind. Electron. Mag. 2015, 9, 62–76. [Google Scholar]
- Mäki, A.; Valkealahti, S.; Leppäaho, J. Operation of Series-Connected Silicon-Based Photovoltaic Modules under Partial Shading Conditions. Prog. Photovolt. Res. Appl. 2012, 20, 298–309. [Google Scholar] [CrossRef]
- Patel, H.; Agarwal, V. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Trans. Energy Convers. 2008, 23, 302–310. [Google Scholar] [CrossRef]
- Woyte, A.; Nijs, J.; Belmans, R. Partial Shadowing of PhotoVoltaic Arrays with Different System Configurations: Literature Review and Field Test Results. Sol. Energy 2003, 74, 217–233. [Google Scholar] [CrossRef]
- Poortmans, J.; Baert, K.; Govaerts, J.; Mertens, R.; Catthoor, F.; Germain, M.; Das, J.; Driessen, J. Linking Nanotechnology to Gigawatts: Creating Building Blocks for Smart PV Modules. Prog. Photovolt. Res. Appl. 2011, 19, 772–780. [Google Scholar] [CrossRef]
- Bauwens, P.; Doutreloigne, J. Reducing Partial Shading Power Loss with an Integrated Smart Bypass. Sol. Energy 2014, 103, 134–142. [Google Scholar] [CrossRef]
- Woyte, A.; Belmans, R.; Nijs, J. Fluctuations in instantaneous clearness index: Analysis and statistics. Sol. Energy 2007, 81, 195–206. [Google Scholar] [CrossRef]
- Herteleer, B. Outdoor Thermal and Electrical Characterisation of Photovoltaic Modules and Systems. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2016. [Google Scholar]
- Gray, P.; Hurst, P.; Lewis, S.; Meyer, R. Analysis and Design of Analog Integrated Circuits, 5th ed.; Wiley: New York, NY, USA, 2009; Chapter 4. [Google Scholar]
- Oguey, H.; Aebischer, D. CMOS Current Reference without Resistance. IEEE J. Solid-State Circuits 1997, 32, 1132–1135. [Google Scholar] [CrossRef]
- Vittoz, E.; Fellrath, J. CMOS Analog Integrated Circuits Based on Weak Inversion Operation. IEEE J. Solid-State Circuits 1977, 12, 224–231. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Ruppert, E. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- SM74611 Datashee. Texas Instruments: Dallas, TX, USA, 2012.
- SPV1520 Datasheet. ST Microelectronics: Geneva, Switzerland, 2015.
- Pennisi, S.; Pulvirenti, F.; Scala, A.L. Low-Power Cool Bypass Switch for Hot Spot Prevention in Photovoltaic Panels. ETRI J. 2011, 33, 880–886. [Google Scholar] [CrossRef]
# | Circuit 1 | Circuit 2 | Circuit 3 | Circuit 4 | Circuit 5 |
---|---|---|---|---|---|
Circuit of Figure 7a, is an NMOS with L = 2.5 mm | A single PMOS with L = 20.0 mm and a grounded gate | Circuit of Figure 7a, = 20 mΩ | Circuit of Figure 7a, = 40 mΩ | Circuit of Figure 7b | |
2.5 nA | 1.5 nA | 2 nA | 1 nA | 2 nA | |
Die area | 15,273 m | 34,560 m | 180,800 m | 350,140 m | 39,816 m |
Horizontal Shade | ||||||||||
Old | New | |||||||||
65.12% | 47.48% | |||||||||
IB | DB | NB | TI | ST | ||||||
47.48% | 40.92% | 46.68% | 47.20% | 46.52% | ||||||
lowest local max. | 100% | 82.91% | 97.72% | 99.20% | 97.26% | |||||
Vertical Shade | ||||||||||
Old | New | |||||||||
5.32% | 75.14% | |||||||||
IB | DB | NB | TI | ST | ||||||
75.14% | 57.39% | 72.90% | 74.35% | 72.46% | ||||||
lowest local max. | 100% | 35.51% | 90.92% | 96.76% | 89.14% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauwens, P.; Doutreloigne, J. NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS): Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications. Energies 2016, 9, 450. https://doi.org/10.3390/en9060450
Bauwens P, Doutreloigne J. NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS): Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications. Energies. 2016; 9(6):450. https://doi.org/10.3390/en9060450
Chicago/Turabian StyleBauwens, Pieter, and Jan Doutreloigne. 2016. "NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS): Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications" Energies 9, no. 6: 450. https://doi.org/10.3390/en9060450
APA StyleBauwens, P., & Doutreloigne, J. (2016). NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS): Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications. Energies, 9(6), 450. https://doi.org/10.3390/en9060450