Study on Reaction Characteristics of Chemical-Looping Combustion between Maize Stalk and High Index Facet Iron Oxide
Abstract
:1. Introduction
2. Experimental Methods
2.1. Oxygen Carrier Preparation
2.2. Biomass
2.3. TGA Experiment and Characterization Methods
3. Results and Discussion
3.1. Reaction Between OCs and Maize Stalk
3.2. FTIR Analysis
3.3. Reaction between OCs and CO
3.4. Repeated Cycle Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Richter, H.J.; Knoche, K.F. Reversibility of Combustion Processes; Oxford University Press: Washington, DC, USA, 1983; pp. 71–85. [Google Scholar]
- Jin, H.G.; Wang, B.Q. Principle of cascading utilization of chemical energy. J. Eng. Thermophys. 2004, 25, 181–184. [Google Scholar]
- Cabello, A.; Dueso, C.; García-Labiano, F.; Adánez, J. Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit. Fuel 2014, 121, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Abad, A.; Mattisson, T.; Lyngfelt, A.; Johansson, M. The use of iron oxide as oxygen carrier in a chemical–looping reactor. Fuel 2007, 8, 1021–1035. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sedor, K.E.; de Lasa, H.I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: Desorption kinetics and metal-support interaction. Chem. Eng. Sci. 2007, 62, 5464–5472. [Google Scholar] [CrossRef]
- Tang, M.C.; Xu, L.; Fan, M.H. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review. Appl. Energy 2015, 151, 143–156. [Google Scholar] [CrossRef]
- Zhu, X.; Li, K.Z.; Wei, Y.G.; Wang, H.; Sun, L.Y. Chemical-looping steam methane reforming over a CeO2–Fe2O3 oxygen carrier: Evolution of its structure and reducibility. Energy Fuels 2014, 28, 754–760. [Google Scholar] [CrossRef]
- Azimi, G.; Leion, H.; Mattisson, T.; Rydén, M.; Snijkers, F.; Lyngfelt, A. Mn–Fe oxides with support of MgAl2O4, CeO2, ZrO2 and Y2O3–ZrO2 for chemical-looping combustion and chemical-looping with oxygen uncoupling. Ind. Eng. Chem. Res. 2014, 53, 10358–10365. [Google Scholar] [CrossRef]
- Liu, L.; Zachariah, M.R. Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion. Energy Fuels 2013, 27, 4977–4983. [Google Scholar] [CrossRef]
- Qin, W.; Lin, C.F.; Cheng, W.L.; Xiao, X.B. Enhancing the activity of iron based oxygen carrier via surface controlled preparation for lignite chemical-looping combustion. Chem. J. Chin. Univ. 2015, 36, 116–123. [Google Scholar]
- Ma, J.; Zhao, H.; Tian, X.; Wei, Y.; Zhang, Y.; Zheng, C. Continuous operation of interconnected fluidized bed reactor for chemical looping combustion of CH4 using hematite as oxygen carrier. Energy Fuels 2015, 29, 3257–3267. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Chemical-looping combustion (CLC) for inherent CO2 separations–A review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Wei, G.; He, F.; Zhao, Z.; Huang, Z.; Zheng, A.; Zhao, K.; Li, H. Performance of Fe–Ni bimetallic oxygen carriers for chemical looping gasification of biomass in a 10 kW th interconnected circulating fluidized bed reactor. Int. J. Hydrog. Energy 2015, 40, 16021–16032. [Google Scholar] [CrossRef]
- Thunman, H.; Lind, F.; Breitholtz, C.; Berguerand, N.; Seemann, M. Using an oxygen–carrier as bed material for combustion of biomass in a 12-MWth circulating fluidized-bed boiler. Fuel 2013, 113, 300–309. [Google Scholar] [CrossRef]
- Lyngfelt, A. Chemical-looping combustion of solid fuels-status of development. Appl. Energy 2014, 113, 1869–1873. [Google Scholar] [CrossRef]
- Shen, L.; Wu, J.; Xiao, J. Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier. Energy Fuels 2009, 23, 2498–2505. [Google Scholar] [CrossRef]
- Adánez-Rubio, I.; Abad, A.; Gayán, P. Biomass combustion with CO2 capture by chemical looping with oxygen uncoupling (CLOU). Fuel Process. Technol. 2014, 124, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Wang, S.; Wang, L. Experimental investigation of co-combustion of coal and biomass using chemical looping technology. Fuel Process. Technol. 2013, 110, 258–267. [Google Scholar] [CrossRef]
- Mendiara, T.; Abad, A.; de Diego, L.F. Biomass combustion in a CLC system using an iron ore as an oxygen carrier. Int. J. Greenh. Gas Control 2013, 19, 322–330. [Google Scholar] [CrossRef]
- Wang, P.; Massoudi, M. Slag behavior in gasifiers Part I: Influence of coal properties and gasification conditions. Energies 2013, 6, 784–806. [Google Scholar] [CrossRef]
- Leion, H.; Mattisson, T.; Lyngfelt, A. Solid fuels in chemical-looping combustion. Int. J. Greenh. Gas Control 2008, 2, 180–193. [Google Scholar] [CrossRef]
- Leion, H.; Jerndal, E.; Steenari, B.M.; Hermansson, S.; Mattisson, T.; Lyngfelt, A. Solid fuels in chemical looping combustion using oxide scale and unprocessed iron ore oxygen carriers. Fuel 2009, 88, 1945–1954. [Google Scholar] [CrossRef]
- Dennis, J.S.; Scott, S.A. In situ gasification of a lignite coal and CO2 separation using chemical looping with a Cu-based oxygen carrier. Fuel 2010, 89, 1623–1640. [Google Scholar] [CrossRef]
- Dennis, J.S.; Műller, C.R.; Scott, S.A. In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: Performance with bituminous coals. Fuel 2010, 89, 2353–2364. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers. Manag. 2015, 89, 251–259. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, H.D.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Dong, C.Q.; Liu, X.L.; Qin, W.; Lu, Q.; Wang, X.Q.; Shi, S.M.; Yang, Y.P. Deep reduction behavior of iron oxide and its effect on direct CO oxidation. Appl. Sur. Sci. 2012, 258, 2562–2569. [Google Scholar] [CrossRef]
- Mendiara, T.; García-Labiano, F.; Gayan, P.; Abad, A.; de Diego, L.F.; Adanez, J. Evaluation of the use of different coals in chemical looping combustion using a bauxite waste as oxygen carrier. Fuel 2013, 106, 814–826. [Google Scholar] [CrossRef]
- Rubel, A.; Liu, K.; Neathery, J.; Taulbee, D. Oxygen carriers for chemical looping combustion of solid fuels. Fuel 2009, 88, 876–884. [Google Scholar] [CrossRef]
- Giuntoli, J.; de Jong, W.; Arvelakis, S.; Spliethoff, H.; Verkooijen, A.H.M. Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: Dry distiller’s grains with solubles (DDGS) and chicken manure. J. Anal. Appl. Pyrolysis 2009, 85, 301–312. [Google Scholar] [CrossRef]
- Tao, L.; Zhao, G.; Qian, J.; Qin, Y. TG-FTIR characterisation of pyrolysis of waste mixtures of paint and tar slag. J. Hazard. Mater. 2010, 175, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Hu, S.; Xiang, J.; Li, P.; Huang, D.; Jiang, L.; Zhang, A.; Zhang, J. FTIR study of pyrolysis products evolving from typical agricultural residues. J. Anal. Appl. Pyrolysis 2010, 88, 117–123. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Doroodchi, E.; Moghtaderi, B. Reduction Kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion. Energy Fuels 2015, 29, 337–345. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F. Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 2012, 38, 215–282. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Lin, C.F.; Long, D.T.; Xiao, X.B.; Dong, C.Q. Reaction activity and deep reduction reaction mechanism of a high index iron oxide surface in chemical looping combustion. Acta Phys. Chim. Sin. 2015, 31, 667–675. [Google Scholar]
- Abad, A.; García-Labiano, F.; de Diego, L.F.; Gayán, P.; Adánez, J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy Fuels 2007, 21, 1843–1853. [Google Scholar] [CrossRef]
- Cabello, A.; Abad, A.; García-Labiano, F.; Gayán, P.; de Diego, L.F.; Adánez, J. Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled chemical looping combustion. Chem. Eng. J. 2014, 258, 265–280. [Google Scholar] [CrossRef]
- Abad, A.; Adánez, J.; García-Labiano, F.; de Diego, L.F.; Gayán, P.; Celaya, J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chem. Eng. Sci. 2007, 62, 533–549. [Google Scholar] [CrossRef] [Green Version]
- Mattisson, T.; Lyngfelt, A.; Cho, P. The use of iron oxide as oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel 2001, 80, 1953–1962. [Google Scholar] [CrossRef]
- Sun, K.; Ishii, M.; Takahashi, R.; Yagi, J.I. Oxidation Kinetics of Cement-bonded Natural Ilmenite Pellets. ISIJ Int. 1992, 32, 489–495. [Google Scholar] [CrossRef]
- Cho, P. Development and Characterisation of Oxygen-Carrier Materials for Chemical-Looping Combustion; Chalmers University of Technology: Göteborg, Sweden, 2005. [Google Scholar]
- Liu, X.H.; Zhang, J.; Wu, S.H.; Yang, D.J.; Liu, P.R.; Zhang, H.M.; Wang, S.R.; Yao, X.D.; Zhu, G.S.; Zhao, H.J. Single crystal α-Fe2O3 with exposed {104} facets for high performance gas sensor applications. RSC Adv. 2012, 2, 6178–6184. [Google Scholar] [CrossRef]
- Levin, I.; Brandon, D. Metastable alumina polymorphs: Crystal structures and transition sequences. J. Am. Ceram. Soc. 1998, 81, 1995–2012. [Google Scholar] [CrossRef]
- Macedo, M.I.F.; Bertran, C.A.; Osawa, C.C. Kinetics of the γ→α-alumina phase transformation by quantitative X-ray diffraction. J. Mater. Sci. 2007, 42, 2830–2836. [Google Scholar] [CrossRef]
Analysis Method | Proximate Analysis Wad/% | Ultimate Analysis Wad/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Content | Fad | Vad | Aad | Mad | Cad | Had | Oad | Nad | Sad |
Result | 16.76 | 74.37 | 2.97 | 5.90 | 46.98 | 6.13 | 37.20 | 0.57 | 0.25 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, W.; Lin, C.; Wang, J.; Xiao, X.; Dong, C.; Wei, L. Study on Reaction Characteristics of Chemical-Looping Combustion between Maize Stalk and High Index Facet Iron Oxide. Energies 2016, 9, 656. https://doi.org/10.3390/en9080656
Qin W, Lin C, Wang J, Xiao X, Dong C, Wei L. Study on Reaction Characteristics of Chemical-Looping Combustion between Maize Stalk and High Index Facet Iron Oxide. Energies. 2016; 9(8):656. https://doi.org/10.3390/en9080656
Chicago/Turabian StyleQin, Wu, Changfeng Lin, Jianye Wang, Xianbin Xiao, Changqing Dong, and Li Wei. 2016. "Study on Reaction Characteristics of Chemical-Looping Combustion between Maize Stalk and High Index Facet Iron Oxide" Energies 9, no. 8: 656. https://doi.org/10.3390/en9080656
APA StyleQin, W., Lin, C., Wang, J., Xiao, X., Dong, C., & Wei, L. (2016). Study on Reaction Characteristics of Chemical-Looping Combustion between Maize Stalk and High Index Facet Iron Oxide. Energies, 9(8), 656. https://doi.org/10.3390/en9080656