Extending the Applicability of the MMN-HSS Method for Solving Systems of Nonlinear Equations under Generalized Conditions
Abstract
:1. Introduction
- (a)
- Larger radius of convergence,
- (b)
- More precise error estimates on ,
- (c)
2. Semilocal Convergence
- (H1)
- Let . There exist , , and such that
- (H2)
- There exist , , continuous and nondecreasing functions with such that, for eachDefine functions w and v by and .
- (H3)
- There exist , , continuous and nondecreasing functions with such that, for each
3. Numerical Examples
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amat, S.; Busquier, S.; Plaza, S.; Guttérrez, J.M. Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 2003, 157, 197–205. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Plaza, S. Dynamics of the King and Jarratt iterations. Aequ. Math. 2005, 69, 212–223. [Google Scholar] [CrossRef]
- Amat, S.; Hernández, M.A.; Remero, N. A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 2008, 206, 164–174. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Applications of Newton—Type Iterations; Springer-Verlag: New York, NY, USA, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Computational Methods in Nonlinear Analysis; World Scientific Publishing Company: Hackensack, NJ, USA, 2013. [Google Scholar]
- Argyros, I.K.; Magreñán, Á.A. Ball convergence theorems and the convergence planes of an iterative methods for nonlinear equations. SeMA 2015, 71, 39–55. [Google Scholar]
- Argyros, I.K.; Sharma, J.R.; Kumar, D. Local convergence of Newton-HSS methods with positive definite Jacobian matrices under generalized conditions. SeMA 2017. [Google Scholar] [CrossRef]
- Argyros, I.K.; Sharma, J.R.; Kumar, D. Extending the applicability of modified Newton-HSS method for solving systems of nonlinear equations. Stud. Math. 2017, submitted. [Google Scholar]
- Axelsson, O. Iterative Solution Methods; Cambridge University Press: Cambridge, CA, USA, 1994. [Google Scholar]
- Bai, Z.-Z.; Guo, X.P. The Newton-HSS methods for systems of nonlinear equations with positive definite Jacobian matrices. J. Comput. Math. 2010, 28, 235–260. [Google Scholar]
- Bai, Z.-Z.; Golub, G.H.; Pan, J.Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 2004, 98, 1–32. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Golub, G.H.; Ng, M.K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite Linear systems. SIAM J. Matrix Anal. Appl. 2003, 24, 603–626. [Google Scholar] [CrossRef]
- Cordero, A.; Ezquerro, J.A.; Hernández-Veron, M.A.; Torregrosa, J.R. On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 2015, 251, 396–403. [Google Scholar] [CrossRef]
- Dembo, R.S.; Eisenstat, S.C.; Steihaug, T. Inexact Newton methods. SIAM J. Numer. Anal. 1982, 19, 400–408. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, M.A. New iterations of R-order four with reduced computational cost. BIT Numer. Math. 2009, 49, 325–342. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Hernández, M.A. Recurrence relations for the super Halley Method. Comput. Math. Appl. 1998, 36, 1–8. [Google Scholar] [CrossRef]
- Guo, X.-P.; Duff, I.S. Semilocal and global convergence of Newton-HSS method for systems of nonlinear equations. Numer. Linear Algebra Appl. 2011, 18, 299–315. [Google Scholar] [CrossRef]
- Hernández, M.A.; Martínez, E. On the semilocal convergence of a three steps Newton-type process under mild convergence conditions. Numer. Algorithms 2015, 70, 377–392. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.-P. Multi-step modified Newton-HSS methods for systems of nonlinear equations with positive definite Jacobian Matrices. Numer. Algorithms 2017, 75, 55–80. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iteraive Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Shen, W.-P.; Li, C. Convergence criterion of inexact methods for operators with Hölder continuous derivatives. Taiwanese J. Math. 2008, 12, 1865–1882. [Google Scholar]
- Wu, Q.-B.; Chen, M.-H. Convergence analysis of modified Newton-HSS method for solving systems of nonlinear equations. Numer. Algorithms 2013, 64, 659–683. [Google Scholar] [CrossRef]
n | 100 | 200 | 500 | 1000 |
---|---|---|---|---|
N-HSS | 4.1 | 4.1 | 4.2 | 4.1 |
MN-HSS | 4.4 | 4.4 | 4.3 | 4.3 |
MMN-HSS | 4.4 | 4.4 | 4.3 | 4.3 |
n | Method | Error Estimates | CPU-Time | Iterations |
---|---|---|---|---|
100 | N-HSS | 1.744 | 5 | |
MN-HSS | 1.485 | 4 | ||
3MN-HSS | 1.281 | 3 | ||
4MN-HSS | 1.327 | 3 | ||
200 | N-HSS | 6.162 | 5 | |
MN-HSS | 4.450 | 4 | ||
3MN-HSS | 4.287 | 3 | ||
4MN-HSS | 4.108 | 3 | ||
500 | N-HSS | 32.594 | 5 | |
MN-HSS | 24.968 | 4 | ||
3MN-HSS | 21.250 | 3 | ||
4MN-HSS | 20.406 | 3 | ||
1000 | N-HSS | 119.937 | 5 | |
MN-HSS | 98.203 | 4 | ||
3MN-HSS | 89.018 | 3 | ||
4MN-HSS | 91.000 | 3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Sharma, J.R.; Kumar, D. Extending the Applicability of the MMN-HSS Method for Solving Systems of Nonlinear Equations under Generalized Conditions. Algorithms 2017, 10, 54. https://doi.org/10.3390/a10020054
Argyros IK, Sharma JR, Kumar D. Extending the Applicability of the MMN-HSS Method for Solving Systems of Nonlinear Equations under Generalized Conditions. Algorithms. 2017; 10(2):54. https://doi.org/10.3390/a10020054
Chicago/Turabian StyleArgyros, Ioannis K., Janak Raj Sharma, and Deepak Kumar. 2017. "Extending the Applicability of the MMN-HSS Method for Solving Systems of Nonlinear Equations under Generalized Conditions" Algorithms 10, no. 2: 54. https://doi.org/10.3390/a10020054
APA StyleArgyros, I. K., Sharma, J. R., & Kumar, D. (2017). Extending the Applicability of the MMN-HSS Method for Solving Systems of Nonlinear Equations under Generalized Conditions. Algorithms, 10(2), 54. https://doi.org/10.3390/a10020054