Algorithm for Mapping Kidney Tissue Water Content during Normothermic Machine Perfusion Using Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Strategy and Preparation
2.2. Measurement of the Tissue Water Content
2.3. Hyperspectral Imaging System
2.4. Image Acquisition and Data Correction
2.5. Data Preprocessing
2.6. Multivariate Data Analysis
2.6.1. Partial Least Squares Regression (PLSR)
2.6.2. Data Partition
2.7. Optimal Wavelengths Selection Strategy
2.8. Visualization of Water Content
3. Results
3.1. Spectral Features of Porcine Kidneys in the Spectral Range of 500 to 995 nm
3.2. Prediction of Water Content Using Full Spectral Range
3.3. Multivariate Statistical Analysis Based on Optimal Wavelengths
3.4. Visualization of Water Content Distribution
4. Discussion
4.1. Hyperspectral Imaging for Spectral Characterization of Kidney Tissue in the VIS/NIR Region
4.2. Partial Least Square Regression for Prediction of the TWC in Kidneys
4.3. Visualization of Tissue Water Content in Kidneys
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AOAC | Association of Official Analytical Chemists |
ASTM | American Society for Testing and Materials |
FOV | Field of View |
HSI | Hyperspectral Imaging |
MSC | Multiplicative Scatter Correction |
NIR | Near-Infrared |
NMP | Normothermic Machine Perfusion |
PLSR | Partial Least Squares Regression |
RMSECV | Root-Mean-Square Error resulted from Cross-Validation |
RMSEP | Root-Mean-Square Error of Prediction |
SG | Savitzky-Golay |
SNV | Standard Normal Variate |
TWC | Tissue Water Content |
TWI | Tissue Water Index |
VIS | Visible Light |
References
- Black, C.K.; Termanini, K.M.; Aguirre, O.; Hawksworth, J.S.; Sosin, M. Solid organ transplantation in the 21st century. Ann. Transl. Med. 2018, 6, 409. [Google Scholar] [CrossRef]
- Annual Report 2019/Eurotransplant International Foundation. Available online: https://www.eurotransplant.org/wp-content/uploads/2020/06/Annual-Report-2019.pdf (accessed on 1 September 2020).
- Remuzzi, G.; Grinyo, J.; Ruggenenti, P.; Beatini, M.; Cole, E.H.; Milford, E.L.; Brenner, B.M. Early Experience with Dual Kidney Transplantation in Adults using Expanded Donor Criteria. J. Am. Soc. Nephrol. 1999, 10, 2591–2598. [Google Scholar]
- Rao, P.S.; Schaubel, D.E.; Guidinger, M.K.; Andreoni, K.A.; Wolfe, R.A.; Merion, R.M.; Port, F.K.; Sung, R.S. A comprehensive risk quantification score for deceased donor kidneys: The kidney donor risk index. Transplantation 2009, 88, 231–243. [Google Scholar] [CrossRef]
- Stallone, G.; Grandaliano, G. To discard or not to discard: Transplantation and the art of scoring. Clin. Kidney J. 2019, 12, 564–568. [Google Scholar] [CrossRef] [Green Version]
- Moeckli, B.; Sun, P.; Lazeyras, F.; Morel, P.; Moll, S.; Pascual, M.; Bühler, L.H. Evaluation of donor kidneys prior to transplantation: An update of current and emerging methods. Transpl. Int. 2019, 32, 459–469. [Google Scholar] [CrossRef]
- Jing, L.; Yao, L.; Zhao, M.; Peng, L.; Liu, M. Organ preservation: From the past to the future. Acta Pharmacol. Sin. 2018, 39, 845–857. [Google Scholar] [CrossRef]
- Kaths, J.M.; Paul, A.; Robinson, L.A.; Selzner, M. Ex vivo machine perfusion for renal graft preservation. Transplant. Rev. 2018, 32, 1–9. [Google Scholar] [CrossRef]
- Juriasingani, S.; Akbari, M.; Luke, P.; Sener, A. Novel therapeutic strategies for renal graft preservation and their potential impact on the future of clinical transplantation. Curr. Opin. Organ Transplant. 2019, 24, 385–390. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.; Srinivasa, S.; Callaghan, C.J.; Watson, C.J.E.; Dark, J.H.; Fisher, A.J.; Wilson, C.H.; Friend, P.J.; Johnson, R.; Forsythe, J.L.; et al. Novel Organ Perfusion and Preservation Strategies in Transplantation—Where are we going in the UK? Transplantation 2020, 104, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Dare, A.J.; Pettigrew, G.J.; Saeb-Parsy, K. Preoperative Assessment of the Deceased-Donor Kidney: From Macroscopic Appearance to Molecular Biomarkers. Transplantation 2014, 97, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Markgraf, W.; Janssen, M.W.W.; Lilienthal, J.; Feistel, P.; Thiele, C.; Stöckle, M.; Malberg, H. Hyperspectral imaging for ex-vivo organ characterization during normothermic machine perfusion. Eur. Urol. Suppl. 2018, 17, e767. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Barlow, A.D.; Yates, P.J.; Snoeijs, M.G.; van Heurn, E.L.; Nicholson, M.L. A pilot study assessing the feasibility of a short period of normothermic preservation in an experimental model of non heart beating donor kidneys. J. Surg. Res. 2011, 171, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Nicholson, M.L. First in man renal transplantation after ex vivo normothermic perfusion. Transplantation 2011, 92, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Barlow, A.D.; Hunter, J.P.; Nicholson, M.L. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. BJS 2015, 102, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Nicholson, M.L. An Assessment of Urinary Biomarkers in a Series of Declined Human Kidneys Measured during ex Vivo Normothermic Kidney Perfusion. Transplantation 2017, 101, 2120–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiva, N.; Sharma, N.; Kulkarni, Y.A.; Mulay, S.R.; Gaikwad, A.B. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci. 2020, 256, 117860. [Google Scholar] [CrossRef]
- Nieuwenhuijs-Moeke, G.J.; Pischke, S.E.; Berger, S.P.; Stephan, S.P.; Sanders, J.S.F.; Pol, R.A.; Struys, M.M.R.F.; Ploeg, R.J.; Leuvenink, H.G.D. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J. Clin. Med. 2020, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef]
- Hazenberg, C.E.V.B.; Aan de Stegge, W.B.; Van Baal, S.G.; Moll, F.L.; Bus, S.A. Telehealth and telemedicine applications for the diabetic foot: A systematic review. Diabetes Metab. Res. Rev. 2020, 36, e3247. [Google Scholar] [CrossRef]
- Gupta, V.B.; Chitranshi, N.; Den Haan, J.; Mirzaei, M.; You, Y.; Lim, J.K.H.; Basavarajappa, D.; Godinez, A.; Di Angelantonio, S.; Sachdev, P.S.; et al. Retinal changes in Alzheimer’s disease—Integrated prospects of imaging, functional and molecular advances. Prog. Retin. Eye Res. 2020, 100899. [Google Scholar] [CrossRef]
- Ortega, S.; Fabelo, H.; Iakovidis, D.K.; Koulaouzidis, A.; Callico, G.M. Use of Hyperspectral/Multispectral Imaging in Gastroenterology. Shedding Some Different Light into the Dark. J. Clin. Med. 2019, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiko, G.; Lombardi, P.; Au, Y.; Queen, D.; Armstrong, D.; Harding, K. Hyperspectral imaging in wound care: A systematic review. Int. Wound J. 2020, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mühle, R.; Ernst, H.; Sobottka, S.B.; Morgenstern, U. Workflow and hardware for intraoperative hyperspectral data acquisition in neurosurgery. Biomed. Eng. Biomed. Tech. 2020. ahead of print. [Google Scholar] [CrossRef]
- Markgraf, W.; Feistel, P.; Thiele, C.; Malberg, H. Algorithms for mapping kidney tissue oxygenation during normothermic machine perfusion using hyperspectral imaging. Biomed Technol. 2018, 63, 557–566. [Google Scholar] [CrossRef]
- Tetschke, F.; Markgraf, W.; Gransow, M.; Koch, S.; Thiele, C.; Kulcke, A.; Malberg, H. Hyperspectral imaging for monitoring oxygen saturation levels during normothermic kidney perfusion. J. Sens. Syst. 2016, 5, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Holmer, A.; Marotz, J.; Wahl, P.; Dau, M.; Kämmerer, P.W. Hyperspectral imaging in perfusion and wound diagnostics—Methods and algorithms for the determination of tissue parameters. Biomed. Technol. 2018, 63, 547–556. [Google Scholar] [CrossRef]
- Thiem, D.G.E.; Frick, R.W.; Goetze, E.; Gielisch, M.; Al-Nawas, B.; Kämmerer, P.W. Hyperspectral analysis for perioperative perfusion monitoring—A clinical feasibility study on free and pedicled flaps. Clin. Oral Investig. 2020. [Google Scholar] [CrossRef]
- Daeschlein, G.; Langner, I.; Wild, T.; von Podewils, S.; Sicher, C.; Kiefer, T.; Jünger, M. Hyperspectral Imaging as a Novel Diagnostic Tool in Microcirculation of Wounds. Clin. Hemorheol. Microcirc. 2017, 67, 467–474. [Google Scholar] [CrossRef]
- Wild, T.; Becker, M.; Winter, J.; Schuhschenk, N.; Daeschlein, G.; Siemers, F. Hyperspectral imaging of tissue perfusion and oxygenation in wounds: Assessing the impact of a micro capillary dressing. J. Wound Care 2018, 27, 38–51. [Google Scholar] [CrossRef]
- Sicher, C.; Rutkowski, R.; Lutze, S.; von Podewils, S.; Wild, T.; Kretching, M.; Daeschlein, G. Hyperspectral imaging as a possible tool for visualization of changes in hemoglobin oxygenation in patients with deficient hemodynamics—Proof of concept. Biomed. Eng. Biomed. Tech. 2018, 63, 609–616. [Google Scholar] [CrossRef]
- Mehdorn, M.; Köhler, H.; Rabe, S.M.; Niebisch, S.; Lyros, O.; Chalopin, C.; Gockel, I.; Jansen-Winkeln, B. Hyperspectral Imaging (HSI) in Acute Mesenteric Ischemia to Detect Intestinal Perfusion Deficits. J. Surg. Res. 2020, 254, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Langner, I.; Sicher, C.; von Podewils, S.; Henning, E.; Kim, S.; Daeschlein, G. Hyperspectral imaging demonstrates microcirculatory effects of postoperative exercise therapy in Dupuytren’s disease. Handchir. Mikrochir. Plast. Chir. 2019, 51, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Winkeln, B.; Maktabi, M.; Takoh, J.P.; Rabe, S.M.; Barberio, M.; Köhler, H.; Neumuth, T.; Melzer, A.; Chalopin, C.; Gockel, I. Hyperspectral Imaging of Gastrointestinal Anastomoses. Der Chirurg. 2018, 89, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Köhler, H.; Jansen-Winkeln, B.; Maktabi, M.; Barberio, M.; Takoh, J.; Holfert, N.; Moulla, Y.; Niebisch, S.; Diana, M.; Neumuth, T.; et al. Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surg. Endosc. 2019, 33, 3775–3782. [Google Scholar] [CrossRef] [Green Version]
- Barberio, M.; Longo, F.; Fiorillo, C.; Seeliger, B.; Mascagni, P.; Agnus, V.; Lindner, V.; Geny, B.; Charles, A.L.; Gockel, I.; et al. HYPerspectral Enhanced Reality (HYPER): A physiology-based surgical guidance tool. Surg. Endosc. 2020, 34, 1736–1744. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles. Food Chem. 2016, 197, 848–854. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging. Food Chem. 2016, 196, 1084–1091. [Google Scholar] [CrossRef]
- Gou, P.; Santos-Garcés, E.; Høy, M.; Wold, J.P.; Liland, K.H.; Fulladosa, E. Feasibility of NIR interactance hyperspectral imaging for on-line measurement of crude composition in vacuum packed dry-cured ham slices. Meat Sci. 2013, 95, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Barbin, D.F.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 2013, 128, 1162–1171. [Google Scholar] [CrossRef]
- ASTM. Standard Practices for Infrared Multivariate Quantitative Analysis; E1655-05; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar] [CrossRef]
- AOAC. Official Method 950.46—Moisture in Meat. AOAC International: 1991. Available online: http://www.eoma.aoac.org/methods/info.asp?ID=15720 (accessed on 1 March 2017).
- MATLAB Central File Exchange. Thresholding Tool. Robert Bemis. 2016. Available online: https://www.mathworks.com/matlabcentral/fileexchange/6770-thresholding-tool (accessed on 10 September 2017).
- Kessler, W. Multivariate Datenanalyse für die Pharma-, Bio-und Prozessanalytik, 1st ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 185–187. [Google Scholar]
- Rinnan, A.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- He, H.J.; Wu, D.; Sun, D.W. Non-destructive and rapid analysis of moisture distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2013, 18, 237–245. [Google Scholar] [CrossRef]
- ElMasry, G.; Iqbal, A.; Sun, D.W.; Allen, P.; Ward, P. Quality classification of cooked, sliced turkey hams using NIR hyperspectral imaging system. J. Food Eng. 2011, 103, 333–344. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.W.; Qua, J.; Zeng, X.A.; Pu, H.; Ma, J. Feasibility of using hyperspectral imaging to predict moisture content of porcine meat during salting process. Food Chem. 2014, 152, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, R. The use of spectrophotometry UV-Vis for the study of porphyrins. In Nanotechnology and Nanomaterials, Macro to Nano Spectroscopy; Uddin, J., Ed.; InTech: Rijeka, Croatia, 2012; pp. 87–108. [Google Scholar]
- Sordillo, L.A.; Pu, Y.; Pratavieira, S.; Budansky, Y.; Alfano, R.R. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 2014, 19, 056004. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.W. Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh. Talanta 2013, 116, 266–276. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Lee, H.; Kim, M.S.; Mo, C.; Cho, B.K. Hyperspectral Reflectance Imaging Technique for Visualization of Moisture Distribution in Cooked Chicken Breast. Sensors 2013, 13, 13289–13300. [Google Scholar] [CrossRef] [Green Version]
- Eichler, J.; Knof, J.; Lenz, H. Measurements on the depth of penetration of light (0.35–1.0 microgram) in tissue. Radiat. Environ. Biophys. 1977, 14, 239–242. [Google Scholar] [CrossRef]
- Soltoff, S.P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 1986, 48, 9–31. [Google Scholar] [CrossRef]
- Simmons, M.N.; Schreiber, M.J.; Gill, I.S. Surgical renal ischemia: A contemporary overview. J. Urol. 2008, 180, 19–30. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Z.; Sun, D.W. Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta 2012, 105, 244–249. [Google Scholar] [CrossRef] [PubMed]
- ElMasry, G.; Wang, N.; Vigneault, C. Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks. Postharvest Biol. Technol. 2009, 52, 1–8. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Prediction of some quality attributes of lamb meat using NIR hyperspectral imaging and multivariate analysis. Anal. Chim. Acta 2011, 714, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Bao, Y.; He, Y. Visible/near-infrared spectra for linear and nonlinear calibrations, a case to predict soluble solids contents and pH value in Peach. Food Bioproc. Technol. 2011, 4, 1376–1383. [Google Scholar] [CrossRef]
- Martinez, B.; Leon, R.; Fabelo, H.; Ortega, S.; Piñeiro, J.F.; Szolna, A.; Hernandez, M.; Espino, C.; O’Shanahan, A.J.; Carrera, D.; et al. Most Relevant Spectral Bands Identification for Brain Cancer Detection Using Hyperspectral Imaging. Sensors 2019, 19, 5481. [Google Scholar] [CrossRef] [Green Version]
Drying Time in Min | No. Kidneys | Tissue Water Content in % | ||
---|---|---|---|---|
Mean | Standard Deviation | Range | ||
0 | 23 | 84.16 | 1.63 | 81.52–89.27 |
10 | 6 | 68.75 | 4.36 | 54.24–75.07 |
20 | 6 | 57.43 | 5.12 | 44.27–67.32 |
Statistics | Training Set n = 172 (19 Kidneys) | Test Set n = 36 (4 Kidneys) |
---|---|---|
Mean | 76.83 | 77.06 |
Standard deviation | 10.97 | 11.42 |
Maximum | 89.27 | 88.01 |
Minimum | 44.27 | 46.80 |
Normalization | Filter | LV’s | Validation Model | Prediction Model | |
---|---|---|---|---|---|
RMSECV | R2P | RMSEP | |||
Absorbance | |||||
Min-Max | - | 17 | 3.570 | 0.912 | 3.339 |
SNV | 17 | 3.800 | 0.904 | 3.498 | |
MSC | 26 | 6.220 | 0.939 | 2.774 | |
SG | 17 | 3.557 | 0.905 | 3.463 | |
Area | - | 21 | 4.628 | 0.968 | 2.026 |
SNV | 17 | 3.961 | 0.901 | 3.542 | |
MSC | 3 | 6.320 | 0.876 | 3.970 | |
SG | 14 | 3.207 | 0.968 | 2.016 | |
Vector | - | 15 | 3.285 | 0.960 | 2.263 |
SNV | 17 | 3.995 | 0.902 | 3.529 | |
MSC | 25 | 5.949 | 0.926 | 3.068 | |
SG | 15 | 3.085 | 0.957 | 2.343 | |
Reflectance | |||||
Min-Max | - | 17 | 3.048 | 0.961 | 2.225 |
SNV | 23 | 3.028 | 0.955 | 2.401 | |
MSC | 8 | 5.620 | 0.795 | 5.102 | |
SG | 17 | 2.795 | 0.963 | 2.162 | |
Area | - | 16 | 3.026 | 0.958 | 2.318 |
SNV | 16 | 3.095 | 0.950 | 2.511 | |
MSC | 21 | 8.965 | 0.957 | 2.325 | |
SG | 15 | 2.928 | 0.942 | 2.704 | |
Vector | - | 17 | 3.070 | 0.959 | 2.274 |
SNV | 16 | 3.095 | 0.950 | 2.511 | |
MSC | 19 | 6.919 | 0.963 | 2.155 | |
SG | 16 | 2.925 | 0.942 | 2.714 |
Normalization | Filter | LV’s | Validation Model | Prediction Model | |
---|---|---|---|---|---|
RMSECV | R2P | RMSEP | |||
Absorbance | |||||
Min-Max | - | 20 | 4.111 | 0.894 | 3.669 |
SNV | 7 | 4.486 | 0.925 | 3.075 | |
MSC | 10 | 7.965 | 0.759 | 5.527 | |
SG | 14 | 3.868 | 0.904 | 3.481 | |
Area | - | 12 | 5.072 | 0.904 | 3.494 |
SNV | 12 | 3.807 | 0.886 | 3.801 | |
MSC | 4 | 8.610 | 0.824 | 4.725 | |
SG | 20 | 3.854 | 0.923 | 3.122 | |
Vector | - | 13 | 3.584 | 0.914 | 3.295 |
SNV | 12 | 3.789 | 0.887 | 3.779 | |
MSC | 4 | 7.195 | 0.490 | 8.0441 | |
SG | 17 | 3.837 | 0.921 | 3.159 | |
Reflectance | |||||
Min-Max | - | 11 | 3.544 | 0.919 | 3.202 |
SNV | 13 | 3.698 | 0.911 | 3.352 | |
MSC | 7 | 7.861 | 0.898 | 3.593 | |
SG | 13 | 3.752 | 0.929 | 3.001 | |
Area | - | 11 | 3.485 | 0.941 | 3.202 |
SNV | 13 | 3.687 | 0.913 | 3.327 | |
MSC | 1 | 9.641 | 0.201 | 10.065 | |
SG | 13 | 3.896 | 0.943 | 2.699 | |
Vector | - | 12 | 3.416 | 0.937 | 2.819 |
SNV | 13 | 3.687 | 0.913 | 3.327 | |
MSC | 15 | 8.160 | 0.852 | 4.336 | |
SG | 10 | 3.828 | 0.920 | 3.180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markgraf, W.; Lilienthal, J.; Feistel, P.; Thiele, C.; Malberg, H. Algorithm for Mapping Kidney Tissue Water Content during Normothermic Machine Perfusion Using Hyperspectral Imaging. Algorithms 2020, 13, 289. https://doi.org/10.3390/a13110289
Markgraf W, Lilienthal J, Feistel P, Thiele C, Malberg H. Algorithm for Mapping Kidney Tissue Water Content during Normothermic Machine Perfusion Using Hyperspectral Imaging. Algorithms. 2020; 13(11):289. https://doi.org/10.3390/a13110289
Chicago/Turabian StyleMarkgraf, Wenke, Jannis Lilienthal, Philipp Feistel, Christine Thiele, and Hagen Malberg. 2020. "Algorithm for Mapping Kidney Tissue Water Content during Normothermic Machine Perfusion Using Hyperspectral Imaging" Algorithms 13, no. 11: 289. https://doi.org/10.3390/a13110289
APA StyleMarkgraf, W., Lilienthal, J., Feistel, P., Thiele, C., & Malberg, H. (2020). Algorithm for Mapping Kidney Tissue Water Content during Normothermic Machine Perfusion Using Hyperspectral Imaging. Algorithms, 13(11), 289. https://doi.org/10.3390/a13110289