Stochastic Models to Qualify Stem Tapers
Abstract
:1. Introduction
2. Materials and Methods
2.1. SDE Stem Tapers
2.2. Mean Trends of Stem Tapers
2.3. Parameters Estimation
2.4. Statistical Measures
2.5. Data
2.6. Regression Stem Taper Models
3. Results
3.1. Parameter Estimates
3.2. Stem Taper and Volume Models
4. Discussion
4.1. Final Fitting
4.2. Mean and Quantile Trajectories
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bachelier, L. Théorie de la spéculation. Annales Scientifiques de l’École Normale Supérieure 1900, 3, 21–86. [Google Scholar] [CrossRef]
- Nafidi, A.; Bahij, M.; Gutiérrez-Sánchez, R.; Achchab, B. Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example. Mathematics 2020, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P.; Petrauskas, E. A New Paradigm in Modelling the Evolution of a Stand via the Distribution of Tree Sizes. Sci. Rep. 2017, 7, 15875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visalga, G.; Rupšys, P.; Petrauskas, E. Influence of Noise on Decay Predictions in Standing Trees. AIP Conf. Proc. 2017, 1895, 030006. [Google Scholar]
- Dürr, R.; Waldherr, S. A Novel Framework for Parameter and State Estimation of Multicellular Systems Using Gaussian Mixture Approximations. Processes 2018, 6, 187. [Google Scholar] [CrossRef] [Green Version]
- Calatayud Gregori, J.; Chen-Charpentier, B.M.; Cortés López, J.C.; Jornet Sanz, M. Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry 2019, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Román-Román, P.; Romero, D.; Torres-Ruiz, F. A Diffusion Process to Model Generalized von Bertalanffy Growth Patterns: Fitting to Real Data. J. Theor. Biol. 2010, 263, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Cresson, J.; Sonner, S. A Note on a Derivation Method for SDE Models: Applications in Biology and Viability Criteria. Stoch. Anal. Appl. 2018, 36, 224–239. [Google Scholar] [CrossRef]
- Ruse, M.G.; Samson, A.; Ditlevsen, S. Inference for biomedical data by using diffusion models with covariates and mixed effects. J. R. Stat. Soc. C Appl. 2020, 69, 167–193. [Google Scholar] [CrossRef]
- Rupšys, P. The Use of Copulas to Practical Estimation of Multivariate Stochastic Differential Equation Mixed Effects Models. AIP Conf. Proc. 2015, 1684, 080011. [Google Scholar]
- Rupšys, P.; Petrauskas, E. A Linkage among Tree Diameter, Height, Crown Base Height, and Crown Width 4-variate Distribution and Their Growth Models: A 4-variate Diffusion Process Approach. Forests 2017, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P. Modeling Dynamics of Structural Components of Forest Stands Based on Trivariate Stochastic Differential Equation. Forests 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P. Understanding the Evolution of Tree Size Diversity within the Multivariate Nonsymmetrical Diffusion Process and Information Measures. Mathematics 2019, 7, 761. [Google Scholar] [CrossRef] [Green Version]
- Max, T.A.; Burkhart, H.E. Segmented Polynomial Regression Applied to Taper Models. For. Sci. 1976, 22, 283–289. [Google Scholar]
- Kozak, A. My Last Words on Taper Equations. For. Chron. 2004, 80, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Petrauskas, E.; Bartkevičius, E.; Rupšys, P.; Memgaudas, R. The use of stochastic differential equations to describe stem taper and volume. Baltic For. 2013, 19, 43–151. [Google Scholar]
- Bronisz, K.; Zasada, M. Comparison of Fixed- and Mixed-Effects Approaches to Taper Modeling for Scots Pine in West Poland. Forests 2019, 10, 975. [Google Scholar] [CrossRef] [Green Version]
- Socha, J.; Netzel, P.; Cywicka, D. Stem Taper Approximation by Artificial Neural Network and a Regression Set Models. Forests 2020, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Garcia, O. Dynamic Modelling of Tree Form. Math. Comput. For. Nat. Res. Sci. 2015, 7, 9–15. [Google Scholar]
- Sone, K.; Suzuki, A.; Miyazawa, S.-I.; Noguchi, K.; Terashima, I. Maintenance mechanisms of the pipe model relationship and Leonardo da Vinci’s rule in the branching architecture of Acer runerve trees. J. Plant Res. 2009, 122, 41–52. [Google Scholar] [CrossRef]
- Narmontas, M.; Rupšys, P.; Petrauskas, E. Models for Tree Taper Form: The Gompertz and Vasicek Diffusion Processes Framework. Symmetry 2020, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Muhairwe, C.K. Tree form and taper variation over time for interior lodgepole pine. Can. J. For. Res. 1994, 24, 1904–1913. [Google Scholar] [CrossRef]
- Sharma, M.; Burkhart, H.E. Selecting a Level of Conditioning for the Segmented Polynomial Taper Equation. For. Sci. 2002, 49, 324–330. [Google Scholar]
- Kozak, A. A Variable-Exponent Taper Equation. Can. J. For. Res. 1988, 18, 1363–1368. [Google Scholar] [CrossRef]
- Chiba, Y. A Quantitative Analysis of Stem Form and Crown Structure: The S-curve and its Application. Tree Phys. 1990, 7, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.; Kang, J.T.; Son, Y.M.; Kim, D.-G. Estimating stem volume using stem taper equation for Quercus mongolica in South Korea. Forest Sci. Technol. 2019, 15, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Özçelik, R.; Brooks, J.R.; Jiang, L. Modeling stem profile of Lebanon cedar, Brutian pine, and Cilicica fir in Southern Turkey using nonlinear mixed-effects models. Eur. J. For. Res. 2011, 130, 613–621. [Google Scholar] [CrossRef]
- Trincado, G.; Burkhart, H.E. A generalized approach for modeling and localizing stem profile curves. For. Sci. 2006, 52, 670–682. [Google Scholar]
- Rupšys, P. Univariate and Bivariate Diffusion Models: Computational Aspects and Applications to Forestry. In Stochastic Differential Equations: Basics and Applications; Deangelo, T.G., Ed.; Nova Science Publisher’s: New York, NY, USA, 2018; pp. 1–77. [Google Scholar]
- Li, C. Maximum-Likelihood Estimation for Diffusion Processes via Closed-Form density Expansions. Ann. Statist. 2013, 41, 1350–1380. [Google Scholar] [CrossRef] [Green Version]
- García, O. Estimating Reducible Stochastic Differential Equations by Conversion to a Least-Squares Problem. Comput. Stat. 2019, 34, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Picchini, U.; Gaetano, A.; Ditlevsen, S. Stochastic Differential Mixed-Effects Models. Scand. J. Stat. 2010, 37, 67–90. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, R. Segmented Taper Equations with Crown Ratio and Stand Density for Dahurian Larch (Larix gmelinii) in Northeastern China. J. For. Res. 2011, 22, 347. [Google Scholar] [CrossRef]
- Dean, T.J. Neighbor and Height Effects on Crown Properties Associated with the Uniform-Stress Principle of Stem Formation. Forests 2018, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Sajjad, S.; Chen, K.; Zhou, L.; Zhang, Y.; Yong, K.K.; Sun, Y. Predicting Tree Height-Diameter Relationship from Relative Competition Levels Using Quantile Regression Models for Chinese Fir (Cunninghamia lanceolata) in Fujian Province, China. Forests 2020, 11, 183. [Google Scholar] [CrossRef] [Green Version]
- Monagan, M.B.; Geddes, K.O.; Heal, K.M.; Labahn, G.; Vorkoetter, S.M.; McCarron, J.; DeMarco, P. Maple Advanced Programming Guide; Maplesoft: Ontario, ON, Canada, 2007; p. 388. [Google Scholar]
- Rupšys, P. Modeling Perspectives of Forest Growth and Yield: Framework of Multivariate Diffusion Process. AIP Conf. Proc. 2019, 2164, 060017. [Google Scholar]
- Zarnani, A.; Karimi, S.; Musilek, P. Quantile Regression and Clustering Models of Prediction Intervals for Weather Forecasts: A Comparative Study. Forecasting 2019, 1, 169–188. [Google Scholar] [CrossRef] [Green Version]
Species | Data | Number of Stems | Min. | Max. | Mean | SD | Number of Stems | Min. | Max. | Mean | SD |
---|---|---|---|---|---|---|---|---|---|---|---|
Estimation | Validation | ||||||||||
Oak | d (cm) | 101 | 7.0 | 49.6 | 21.33 | 8.98 | 45 | 6.0 | 43.0 | 24.40 | 8.05 |
h (m) | 101 | 9.6 | 29.9 | 21.60 | 4.24 | 45 | 11.3 | 29.0 | 22.68 | 3.82 | |
v (m3) | 101 | 0.026 | 2.801 | 0.490 | 0.481 | 45 | 0.020 | 2.047 | 0.591 | 0.424 | |
Ash | d (cm) | 27 | 8.0 | 29.0 | 18.33 | 4.60 | 11 | 10 | 28 | 19.21 | 5.96 |
h (m) | 27 | 11.2 | 25.7 | 19.29 | 2.98 | 11 | 13 | 25.1 | 19.17 | 3.12 | |
v (m3) | 27 | 0.029 | 0.831 | 0.273 | 0.175 | 11 | 0.052 | 0.622 | 0.295 | 0.183 | |
Birch | d (cm) | 230 | 7.6 | 51.2 | 23.26 | 9.04 | 103 | 8.0 | 49.3 | 22.78 | 8.65 |
h (m) | 230 | 10.2 | 31.9 | 21.39 | 4.58 | 103 | 8.4 | 31.3 | 21.37 | 4.26 | |
v (m3) | 230 | 0.027 | 2.583 | 0.504 | 0.439 | 103 | 0.027 | 2.190 | 0.470 | 0.391 | |
Black alder | d (cm) | 136 | 8.0 | 39.9 | 22.74 | 5.65 | 61 | 12.0 | 33.5 | 22.02 | 5.03 |
h (m) | 136 | 8.5 | 27.6 | 20.59 | 3.57 | 61 | 13.2 | 27.4 | 20.66 | 3.42 | |
v (m3) | 136 | 0.019 | 1.806 | 0.467 | 0.282 | 61 | 0.077 | 0.883 | 0.426 | 0.215 | |
White alder | d (cm) | 16 | 7.7 | 8.0 | 17.64 | 5.55 | 6 | 12.0 | 24.2 | 17.68 | 4.26 |
h (m) | 16 | 11.3 | 23.4 | 17.26 | 3.10 | 6 | 15.4 | 20.2 | 17.22 | 1.72 | |
v (m3) | 16 | 0.029 | 0.693 | 0.240 | 0.166 | 6 | 0.097 | 0.403 | 0.221 | 0.112 | |
Aspen | d (cm) | 102 | 7.0 | 49.6 | 21.34 | 8.94 | 44 | 6.0 | 43.0 | 24.45 | 8.13 |
h (m) | 102 | 9.6 | 29.9 | 21.65 | 4.24 | 44 | 11.3 | 29.0 | 22.61 | 3.83 | |
v (m3) | 102 | 0.026 | 2.801 | 0.489 | 0.479 | 44 | 0.020 | 2.049 | 0.595 | 0.429 | |
Pine | d (cm) | 1344 | 5.0 | 58.4 | 25.25 | 9.86 | 567 | 3.8 | 58.5 | 23.95 | 9.87 |
h (m) | 1344 | 4.5 | 35.2 | 20.85 | 5.23 | 567 | 3.8 | 33.5 | 20.14 | 5.50 | |
v (m3) | 1344 | 0.006 | 3.129 | 0.626 | 0.562 | 567 | 0.003 | 3.398 | 0.570 | 0.563 | |
Spruce | d (cm) | 661 | 7.9 | 52.4 | 23.14 | 8.78 | 249 | 8.0 | 49.8 | 23.34 | 8.31 |
h (m) | 661 | 7.0 | 32.7 | 20.92 | 5.54 | 249 | 7.5 | 33.8 | 21.12 | 5.23 | |
v (m3) | 661 | 0.021 | 2.737 | 0.571 | 0.486 | 249 | 0.018 | 2.994 | 0.571 | 0.423 | |
Number of stems | 2617 | 1086 |
Model | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oak | Ash | Birch | ||||||||||
1 | −0.217 (−1.31) | 0.832 (5.01) | 1.269 (7.65) | 0.986 | −0.059 (−0.45) | 0.706 (5.36) | 1.057 (8.03) | 0.985 | −0.382 (−2.39) | 1.047 (6.56) | 1.747 (10.95) | 0.970 |
2 | −0.262 (−1.58) | 0.833 (5.02) | 1.259 (7.59) | 0.986 | 0.033 (0.25) | 0.712 (5.41) | 1.101 (8.36) | 0.984 | 0.095 (0.60) | 1.120 (7.02) | 1.676 (10.50) | 0.972 |
3 | −0.280 (−1.69) | 1.010 (6.09) | 1.524 (9.19) | 0.979 | 0.032 (0.25) | 0.936 (7.11) | 1.469 (11.16) | 0.962 | −0.422 (−2.64) | 1.263 (7.92) | 2.006 (12.57) | 0.960 |
4 | −0.610 (−3.68) | 0.952 (5.74) | 1.320 (7.96) | 0.984 | 0.015 (0.12) | 0.728 (5.53) | 1.077 (8.18) | 0.985 | −0.437 (−2.74) | 1.167 (7.31) | 1.924 (12.06) | 0.963 |
5 | −0.442 (−2.66) | 0.855 (5.15) | 1.236 (7.45) | 0.986 | −0.156 (−1.19) | 0.717 (5.44) | 1.054 (8.01) | 0.985 | −0.143 (−0.89) | 1.025 (6.42) | 1.663 (10.42) | 0.972 |
6 | −0.394 (−2.38) | 1.021 (6.16) | 1.496 (9.02) | 0.980 | 0.137 (1.04) | 0.907 (6.69) | 1.427 (10.84) | 0.973 | −0.112 (−0.70) | 1.232 (7.72) | 1.918 (12.02) | 0.963 |
7 | −0.388 (−2.34) | 0.846 (5.10) | 1.242 (7.49) | 0.986 | −0.181 (−1.38) | 0.732 (5.56) | 1.064 (8.08) | 0.985 | −0.266 (−1.67) | 1.026 (6.43) | 1.690 (10.59) | 0.971 |
8 | −0.396 (−2.39) | 1.037 (6.25) | 1.520 (9.16) | 0.979 | 0.079 (0.60) | 1.032 (7.84) | 1.700 (12.92) | 0.961 | −0.286 (1.79) | 1.236 (7.75) | 1.948 (12.21) | 0.962 |
9 | −0.503 (3.02) | 1.071 (6.46) | 1.548 (9.33) | 0.978 | −0.166 (−1.26) | 0.987 (7.50) | 1.491 (11.33) | 0.970 | −0.391 (−2.45) | 1.364 (8.55) | 2.081 (13.04) | 0.957 |
10 | −0.249 (−1.50) | 1.012 (6.10) | 1.485 (8.95) | 0.980 | −0.112 (−0.85) | 1.025 (7.78) | 1.511 (11.48) | 0.970 | −0.107 (−0.67) | 1.196 (7.49) | 1.752 (10.98) | 0.969 |
11 | −0.253 (−1.53) | 1.006 (6.07) | 1.519 (9.16) | 0.979 | 0.080 (0.61) | 1.031 (7.83) | 1.637 (12.44) | 0.964 | −0.139 (−0.87) | 1.151 (7.21) | 1.734 (10.86) | 0.970 |
Black alder | White alder | Aspen | ||||||||||
1 | −0.005 (−0.03) | 0.673 (4.33) | 1.043 (6.71) | 0.985 | −0.150 (−1.24) | 0.688 (5.68) | 0.990 (8.18) | 0.983 | −0.344 (−2.08) | 0.846 (5.11) | 1.247 (7.54) | 0.986 |
2 | 0.147 (0.94) | 0.720 (4.63) | 1.092 (7.02) | 0.984 | −0.164 (−1.36) | 0.704 (5.82) | 1.020 (8.42) | 0.982 | −0.241 (−1.46) | 0.833 (5.04) | 1.258 (7.60) | 0.986 |
3 | −0.051 (−0.33) | 0.799 (5.14) | 1.256 (8.08) | 0.978 | −0.102 (−0.84) | 0.808 (6.68) | 1.176 (9.71) | 0.976 | −0.343 (−2.07) | 1.026 (6.20) | 1.536 (9.28) | 0.979 |
4 | 0.064 (0.41) | 0.714 (4.59) | 1.098 (7.06) | 0.983 | 0.099 (0.82) | 0.648 (5.35) | 1.005 (8.30) | 0.983 | −0.095 (−0.57) | 0.803 (4.86) | 1.228 (7.42) | 0.986 |
5 | −0.060 (−0.38) | 0.663 (4.27) | 1.030 (6.62) | 0.985 | −0.192 (−1.59) | 0.724 (5.99) | 1.008 (8.33) | 0.983 | −0.405 (−2.45) | 0.848 (5.13) | 1.230 (7.44) | 0.986 |
6 | −0.085 (−0.55) | 0.827 (5.32) | 1.254 (8.07) | 0.978 | −0.054 (−0.49) | 0.837 (6.91) | 1.182 (9.76) | 0.976 | −0.100 (−0.60) | 0.957 (5.78) | 1.476 (8.92) | 0.980 |
7 | −0.079 (−0.51) | 0.679 (4.37) | 1.047 (6.74) | 0.985 | −0.150 (−1.24) | 0.705 (5.82) | 1.012 (8.36) | 0.983 | −0.377 (−2.28) | 0.849 (5.13) | 1.246 (7.53) | 0.986 |
8 | −0.085 (−0.55) | 0.834 (5.36) | 1.273 (8.18) | 0.978 | −0.115 (−0.95) | 0.837 (6.92) | 1.193 (9.86) | 0.976 | −0.376 (−2.28) | 1.041 (6.29) | 1.535 (9.28) | 0.979 |
9 | −0.171 (−1.10) | 0.850 (5.47) | 1.290 (8.30) | 0.977 | −0.184 (−1.52) | 0.844 (6.97) | 1.207 (9.97) | 0.975 | −0.485 (−2.93) | 1.077 (6.51) | 1.558 (9.41) | 0.978 |
10 | −0.010 (−0.64) | 0.830 (5.34) | 1.253 (8.06) | 0.978 | −0.068 (−0.56) | 0.847 (7.00) | 1.199 (9.91) | 0.975 | −0.231 (−1.40) | 1.019 (6.16) | 1.490 (9.01) | 0.980 |
11 | −0.101 (−0.65) | 0.810 (5.21) | 1.243 (8.00) | 0.979 | −0.018 (−0.15) | 0.874 (7.22) | 1.233 (10.18) | 0.974 | −0.208 (−1.26) | 1.012 (6.12) | 1.509 (9.12) | 0.980 |
Pine | Spruce | |||||||||||
1 | 0.021 (0.12) | 0.825 (4.78) | 1.274 (7.38) | 0.987 | 0.059 (0.35) | 0.885 (5.25) | 1.318 (7.82) | 0.985 | ||||
2 | 0.210 (1.22) | 0.856 (4.96) | 1.276 (7.39) | 0.987 | 0.308 (1.83) | 1.002 (5.95) | 1.399 (8.30) | 0.983 | ||||
3 | 0.040 (0.23) | 0.957 (5.54) | 1.434 (8.31) | 0.983 | 0.065 (0.39) | 1.073 (6.37) | 1.628 (9.66) | 0.976 | ||||
4 | −0.013 (−0.07) | 0.872 (5.06) | 1.324 (7.67) | 0.986 | 0.232 (1.37) | 0.933 (5.53) | 1.351 (8.02) | 0.984 | ||||
5 | −0.021 (−0.12) | 0.796 (4.61) | 1.232 (7.14) | 0.987 | 0.174 (1.03) | 0.874 (5.20) | 1.273 (7.57) | 0.986 | ||||
6 | 0.022 (0.13) | 0.948 (5.49) | 1.401 (8.12) | 0.984 | 0.057 (0.34) | 1.071 (6.36) | 1.613 (9.57) | 0.977 | ||||
7 | −0.054 (−0.31) | 0.824 (4.78) | 1.275 (7.39) | 0.987 | −0.111 (−0.66) | 0.870 (5.16) | 1.324 (7.86) | 0.984 | ||||
8 | −0.065 (−0.37) | 0.987 (6.71) | 1.449 (8.40) | 0.983 | −0.137 (−0.82) | 1.078 (6.40) | 1.639 (9.73) | 0.976 | ||||
9 | −0.171 (−0.99) | 1.080 (6.26) | 1.566 (9.07) | 0.980 | −0.224 (−1.33) | 1.090 (6.47) | 1.640 (9.73) | 0.976 | ||||
10 | 0.009 (0.05) | 0.939 (5.44) | 1.342 (7.78) | 0.985 | −0.012 (−0.07) | 1.048 (6.22) | 1.568 (9.30) | 0.978 | ||||
11 | 0.018 (0.10) | 0.923 (5.35) | 1.332 (7.72) | 0.985 | −0.016 (−0.10) | 0.997 (5.92) | 1.520 (9.02) | 0.979 |
Model | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oak | Ash | Birch | ||||||||||
1 | −0.002 (−0.43) | 0.040 (6.79) | 0.064 (10.94) | 0.977 | −0.002 (−0.72) | 0.023 (7.76) | 0.030 (10.25) | 0.975 | −0.035 (−7.46) | 0.060 (12.89) | 0.111 (23.67) | 0.920 |
2 | −0.006 (−1.10) | 0.039 (6.67) | 0.061 (10.34) | 0.980 | 0.002 (0.74) | 0.021 (7.26) | 0.052 (17.63) | 0.926 | 0.006 (1.29) | 0.058 (12.24) | 0.090 (19.07) | 0.948 |
3 | −0.009 (1.49) | 0.042 (7.04) | 0.060 (10.08) | 0.981 | −0.000 (−0.10) | 0.020 (6.93) | 0.026 (8.65) | 0.982 | −0.039 (−8.29) | 0.064 (13.71) | 0.120 (25.57) | 0.906 |
4 | −0.041 (−6.99) | 0.052 (8.80) | 0.065 (10.97) | 0.977 | 0.0001 (0.02) | 0.022 (7.73) | 0.030 (10.18) | 0.975 | −0.045 (−9.56) | 0.069 (14.73) | 0.129 (27.34) | 0.893 |
5 | −0.025 (−4.23) | 0.043 (7.29) | 0.061 (10.39) | 0.980 | −0.008 (−2.69) | 0.023 (7.87) | 0.030 (10.44) | 0.974 | −0.015 (−3.22) | 0.058 (12.46) | 0.101 (21.60) | 0.933 |
6 | −0.021 (−3.51) | 0.043 (7.35) | 0.058 (9.78) | 0.982 | 0.003 (1.18) | 0.020 (6.73) | 0.025 (8.30) | 0.984 | −0.014 (−2.99) | 0.061 (12.92) | 0.107 (22.66) | 0.926 |
7 | −0.018 (−3.08) | 0.041 (6.98) | 0.059 (10.06) | 0.981 | −0.009 (−2.90) | 0.023 (7.86) | 0.031 (10.50) | 0.974 | −0.025 (−5.31) | 0.059 (12.66) | 0.107 (22.74) | 0.923 |
8 | −0.019 (−3.23) | 0.043 (7.24) | 0.057 (9.24) | 0.982 | −0.003 (−1.08) | 0.020 (6.88) | 0.026 (8.92) | 0.981 | −0.028 (−5.89) | 0.062 (13.25) | 0.114 (24.33) | 0.915 |
9 | −0.027 (−4.70) | 0.045 (7.66) | 0.062 (10.46) | 0.979 | −0.012 (−4.15) | 0.023 (7.93) | 0.030 (10.03) | 0.976 | −0.037 (−7.88) | 0.066 (14.05) | 0.124 (26.41) | 0.900 |
10 | −0.008 (−1.36) | 0.043 (7.27) | 0.066 (11.24) | 0.976 | −0.010 (−3.54) | 0.024 (8.10) | 0.031 (10.56) | 0.973 | −0.005 (−1.05) | 0.049 (10.51) | 0.085 (18.12) | 0.953 |
11 | −0.010 (−1.62) | 0.046 (7.80) | 0.068 (11.61) | 0.974 | −0.001 (−0.37) | 0.025 (8.41) | 0.036 (12.04) | 0.965 | −0.009 (−1.88) | 0.048 (10.11) | 0.083 (17.70) | 0.955 |
Black alder | White alder | Aspen | ||||||||||
1 | 0.003 (0.71) | 0.023 (5.50) | 0.032 (7.40) | 0.979 | −0.004 (−1.98) | 0.022 (9.79) | 0.032 (14.63) | 0.930 | −0.016 (−2.66) | 0.041 (6.89) | 0.057 (9.51) | 0.983 |
2 | 0.014 (3.28) | 0.026 (6.16) | 0.032 (7.43) | 0.979 | −0.006 (−2.91) | 0.024 (10.72) | 0.035 (15.60) | 0.916 | −0.004 (−0.75) | 0.040 (6.67) | 0.058 (9.68) | 0.982 |
3 | −0.001 (−0.15) | 0.025 (5.86) | 0.033 (7.78) | 0.977 | −0.003 (−1.33) | 0.023 (10.45) | 0.033 (15.12) | 0.925 | −0.015 (−2.50) | 0.043 (7.18) | 0.059 (9.96) | 0.981 |
4 | 0.006 (1.52) | 0.025 (5.97) | 0.034 (7.90) | 0.976 | 0.007 (3.13) | 0.020 (9.25) | 0.029 (13.27) | 0.942 | −0.004 (−0.69) | 0.042 (7.09) | 0.062 (10.48) | 0.979 |
5 | −0.001 (−0.25) | 0.024 (5.58) | 0.032 (7.47) | 0.979 | −0.007 (3.18) | 0.023 (10.47) | 0.035 (15.70) | 0.919 | −0.022 (−3.73) | 0.042 (7.10) | 0.056 (9.40) | 0.983 |
6 | −0.003 (−0.80) | 0.026 (6.06) | 0.034 (7.91) | 0.976 | −0.001 (−0.51) | 0.023 (10.39) | 0.034 (15.45) | 0.922 | −0.003 (−0.58) | 0.041 .(6.87) | 0.059 (9.94) | 0.981 |
7 | −0.003 (−0.67) | 0.024 (5.60) | 0.032 (7.50) | 0.978 | −0.004 (−1.89) | 0.024 (10.63) | 0.34 (15.47) | 0.922 | −0.017 (−2.92) | 0.041 (6.94) | 0.057 (9.51) | 0.983 |
8 | −0.003 (−0.76) | 0.025 (5.98) | 0.033 (7.85) | 0.976 | −0.003 (−1.44) | 0.024 (10.80) | 0.035 (15.88) | 0.918 | −0.018 (−3.02) | 0.043 (7.17) | 0.057 (9.64) | 0.983 |
9 | −0.008 (−1.82) | 0.026 (6.19) | 0.034 (8.06) | 0.975 | −0.006 (−2.87) | 0.025 (11.41) | 0.037 (16.54) | 0.911 | −0.027 (−4.51) | 0.045 (7.56) | 0.059 (9.86) | 0.982 |
10 | −0.003 (−0.72) | 0.025 (5.83) | 0.033 (7.75) | 0.977 | −0.003 (−1.53) | 0.022 (10.08) | 0.035 (15.64) | 0.920 | −0.007 (−1.18) | 0.043 (7.25) | 0.061 (10.20) | 0.980 |
11 | −0.003 (0.68) | 0.025 (5.90) | 0.033 (7.79) | 0.977 | −0.001 (−0.67) | 0.024 (10.83) | 0.036 (16.20) | 0.914 | −0.010 (−1.61) | 0.047 (7.87) | 0.063 (10.58) | 0.979 |
Pine | Spruce | |||||||||||
1 | −0.001 (−0.14) | 0.040 (6.97) | 0.071 (12.42) | 0.984 | 0.004 (0.72) | 0.044 (7.69) | 0.064 (11.21) | 0.982 | ||||
2 | 0.017 (3.04) | 0.042 (7.42) | 0.068 (12.00) | 0.985 | 0.026 (4.55) | 0.049 (8.57) | 0.061 (10.67) | 0.983 | ||||
3 | 0.000 (−0.08) | 0.042 (7.29) | 0.073 (12.89) | 0.983 | 0.005 (0.89) | 0.046 (8.01) | 0.066 (11.61) | 0.980 | ||||
4 | −0.009 (−1.61) | 0.042 (7.38) | 0.077 (13.45) | 0.981 | 0.017 (2.98) | 0.045 (7.95) | 0.063 (10.96) | 0.983 | ||||
5 | −0.005 (−0.79) | 0.041 (7.19) | 0.075 (13.15) | 0.982 | 0.014 (2.44) | 0.043 (7.45) | 0.065 (11.35) | 0.982 | ||||
6 | −0.001 (−0.14) | 0.043 (7.48) | 0.076 (13.38) | 0.982 | 0.002 (0.27) | 0.046 (8.14) | 0.068 (11.94) | 0.979 | ||||
7 | −0.008 (−1.37) | 0.041 (7.18) | 0.075 (13.25) | 0.982 | −0.012 (−2.13) | 0.045 (7.92) | 0.071 (12.48) | 0.977 | ||||
8 | −0.012 (−2.11) | 0.044 (7.64) | 0.081 (14.21) | 0.979 | −0.015 (−2.69) | 0.048 (8.47) | 0.075 (13.22) | 0.975 | ||||
9 | −0.020 (−3.48) | 0.046 (8.11) | 0.089 (15.65) | 0.975 | −0.021 (−3.65) | 0.050 (8.74) | 0.079 (13.79) | 0.972 | ||||
10 | 0.002 (0.42) | 0.039 (6.86) | 0.068 (11.91) | 0.985 | 0.003 (0.45) | 0.041 (7.20) | 0.061 (10.70) | 0.983 | ||||
11 | 0.004 (0.71) | 0.039 (6.88) | 0.068 (11.98) | 0.985 | 0.002 (0.39) | 0.039 (6.92) | 0.058 (10.18) | 0.985 |
Species | Model | Parameters of Fitted Models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
αB~β1 * | βB~β2 * | σB~β3 * | αM~β4 * | βM~β5 * | σM~β6 * | αT~β7 * | βT~β8 * | σT~β9 * | a0, a1 | ||
Oak | 1 | 0.1813 | 77.788 | 0.1977 | −0.8322 | - | 0.1420 | 1.3975 | 1.3740 | 0.1661 | 1.3/h; 0.48 |
3 | 0.1750 | 78.035 | 0.2000 | −0.8459 | - | 0.1433 | 1.4723 | 1.2892 | 0.1696 | 1.3/h; 0.53 | |
10 | 0.3396 | 0.9568 | 0.9927 | 0.3694 | 0.0122 | −0.974 | 0.1144 | −1.5853 | 9.0317 | 0.15 | |
Ash | 1 | −0.1913 | 54.172 | 0.2090 | −0.8921 | - | 0.1440 | 1.4213 | 1.2293 | 0.1757 | 1.3/h; 0.44 |
3 | −0.7740 | 41.592 | 0.1643 | −0.8887 | - | 0.1422 | 1.3468 | 1.3074 | 0.1818 | 1.3/h; 0.47 | |
10 | 0.2545 | 0.6893 | 1.0029 | 0.4249 | −0.356 | −1.000 | 0.0043 | −0.1250 | 9.2630 | 0.13 | |
Birch | 1 | 0.1057 | 116.88 | 0.1122 | −1.1217 | - | 0.2426 | 0.5635 | 4.8869 | 0.2920 | 1.3/h; 0.71 |
3 | 0.1384 | 123.99 | 0.1161 | −1.1217 | - | 0.2426 | 0.5635 | 4.8869 | 0.2920 | 1.3/h; 0.71 | |
10 | 0.3393 | 0.9509 | 0.9908 | 0.3502 | −0.018 | −0.9653 | 0.0869 | −1.3239 | 9.6494 | 0.13 | |
Black alder | 1 | −0.0274 | 51.275 | 0.2177 | −0.8009 | - | 0.1381 | 0.9267 | 2.7227 | 0.1784 | 1.3/h; 0.52 |
3 | 0.0406 | 53.403 | 0.2303 | −0.7958 | - | 0.1385 | 0.9362 | 2.6848 | 0.1768 | 1.3/h; 0.51 | |
10 | −0.0023 | 0.9430 | 0.9688 | −0.2615 | 0.4868 | −1.434 | 0.1021 | −0.9516 | 6.9532 | 0.25 | |
White alder | 1 | −0.0910 | 46.120 | 0.2233 | −0.8821 | - | 0.1511 | 1.8751 | 0.9261 | 0.1402 | 1.3/h; 0.58 |
3 | −0.1245 | 45.548 | 0.2252 | −1.8821 | - | 0.1511 | 1.8751 | 0.9261 | 0.1402 | 1.3/h; 0.57 | |
10 | 0.0586 | 1.1558 | 0.9636 | 0.3859 | 0.0784 | −0.9266 | 0.2623 | −2.9388 | 6.6790 | 0.25 | |
Aspen | 1 | 0.2800 | 84.246 | 0.2826 | −0.8373 | - | 0.1403 | 1.3975 | 1.3740 | 0.1661 | 1.3/h; 0.48 |
3 | 0.4664 | 98.204 | 0.3066 | −0.8373 | - | 0.1403 | 1.3975 | 1.3740 | 0.1661 | 1.3/h; 0.48 | |
10 | 0.3286 | 0.9348 | 0.9907 | 0.4456 | 0.1650 | −1.1073 | 0.1462 | −1.5230 | 7.4188 | 0.26 | |
Pine | 1 | 0.2453 | 68.813 | 0.2748 | −1.0220 | - | 0.1752 | 0.7136 | 3.8005 | 0.2259 | 1.3/h; 0.71 |
3 | 0.6334 | 91.042 | 0.3203 | −1.0220 | - | 0.1752 | 0.7136 | 3.8005 | 0.2259 | 1.3/h; 0.71 | |
10 | 0.0734 | 1.1571 | 0.9282 | −0.2450 | 0.5821 | −1.3718 | 0.3076 | −1.9119 | 5.0282 | 0.3 | |
Spruce | 1 | 0.2389 | 80.429 | 0.2498 | −0.8388 | - | 0.1377 | 0.7944 | 3.3469 | 0.2261 | 1.3/h; 0.59 |
3 | 0.2106 | 78.123 | 0.2481 | −0.8297 | - | 0.1360 | 0.8081 | 3.2693 | 0.2243 | 1.3/h; 0.58 | |
10 | 0.3376 | 0.9468 | 0.9578 | −0.2098 | 0.1220 | −1.1860 | 0.0339 | −0.8099 | 7.9206 | 0.25 |
Model | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oak | Ash | Birch | ||||||||||
1 | −0.030 (−0.19) | 0.800 (5.13) | 1.275 (8.18) | 0.985 | −0.055 (−0.43) | 0.641 (5.00) | 0.966 (7.53) | 0.986 | −0.048 (−0.30) | 1.021 (6.29) | 1.641 (10.11) | 0.974 |
3 | 0.000 (0.00) | 0.958 (6.15) | 1.498 (9.61) | 0.979 | −0.040 (−0.31) | 0.860 (6.71) | 1.379 (10.75) | 0.971 | −0.053 (−0.33) | 1.201 (7.39) | 1.855 (11.42) | 0.967 |
10 | 0.000 (0.00) | 0.971 (6.23) | 1.468 (9.43) | 0.980 | 0.000 (0.00) | 0.864 (6.74) | 1.358 (10.59) | 0.972 | 0.000 (0.00) | 1.164 (7.17) | 1.674 (10.31) | 0.973 |
Black alder | White alder | Aspen | ||||||||||
1 | −0.005 (−0.03) | 0.673 (4.33) | 1.043 (6.71) | 0.985 | −0.007 (−0.06) | 0.563 (4.54) | 0.860 (6.94) | 0.988 | −0.023 (−0.15) | 0.807 (5.21) | 1.285 (8.30) | 0.985 |
3 | 0.003 (0.02) | 0.831 (5.17) | 1.271 (7.91) | 0.979 | −0.006 (−0.05) | 0.719 (5.80) | 1.150 (9.28) | 0.978 | −0.014 (−0.09) | 0.966 (6.23) | 1.508 (9.74) | 0.979 |
10 | 0.000 (0.00) | 0.864 (5.38) | 1.275 (7.94) | 0.979 | 0.000 (0.00) | 0.735 (5.93) | 1.124 (9.06) | 0.979 | 0.000 (0.00) | 0.979 (6.32) | 1.480 (9.55) | 0.980 |
Pine | Spruce | |||||||||||
1 | 0.005 (0.03) | 0.855 (4.83) | 1.316 (7.44) | 0.986 | 0.009 (0.05) | 0.830 (4.94) | 1.253 (7.45) | 0.986 | ||||
3 | 0.002 (0.01) | 0.991 (5.60) | 1.495 (8.46) | 0.982 | 0.026 (0.16) | 1.011 (6.01) | 1.578 (9.38) | 0.978 | ||||
10 | 0.000 (0.00) | 0.947 (5.35) | 1.371 (7.75) | 0.985 | 0.000 (0.00) | 0.993 (5.90) | 1.508 (8.96) | 0.980 |
Model | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oak | Ash | Birch | ||||||||||
1 | 0.007 (1.39) | 0.040 (7.76) | 0.060 (11.59) | 0.983 | 0.005 (1.75) | 0.020 (7.01) | 0.025 (8.92) | 0.981 | 0.000 (0.06) | 0.051 (10.39) | 0.088 (16.93) | 0.958 |
3 | 0.009 (1.74) | 0.041 (7.81) | 0.060 (11.57) | 0.984 | 0.004 (1.46) | 0.020 (7.24) | 0.026 (9.19) | 0.980 | 0.000 (0.06) | 0.052 (10.48) | 0.089 (18.02) | 0.956 |
10 | 0.011 * (2.17) | 0.040 (7.68) | 0.059 (11.42) | 0.984 | 0.006 (2.06) | 0.020 (7.18) | 0.025 (8.99) | 0.981 | 0.003 (0.54) | 0.045 (9.12) | 0.075 (15.27) | 0.969 |
Black alder | White alder | Aspen | ||||||||||
1 | 0.005 (1.08) | 0.027 (5.91) | 0.036 (7.91) | 0.982 | 0.005 (2.25) | 0.017 (7.27) | 0.028 (12.06) | 0.967 | 0.009 (1.66) | 0.041 (7.83) | 0.061 (11.63) | 0.983 |
3 | 0.004 (0.96) | 0.027 (6.01) | 0.037 (8.04) | 0.981 | 0.005 (2.15) | 0.017 (7.25) | 0.028 (11.87) | 0.968 | 0.009 (1.77) | 0.041 (7.85) | 0.061 (11.61) | 0.983 |
10 | 0.002 (0.36) | 0.027 (5.89) | 0.037 (8.06) | 0.981 | −0.003 (−1.53) | 0.016 (6.97) | 0.030 (12.60) | 0.964 | 0.008 (1.60) | 0.040 (7.65) | 0.059 (11.84) | 0.984 |
Pine | Spruce | |||||||||||
1 | 0.004 (0.71) | 0.043 (7.01) | 0.073 (12.06) | 0.983 | 0.011 * (1.95) | 0.044 (7.64) | 0.065 (11.48) | 0.982 | ||||
3 | 0.005 (0.80) | 0.044 (7.21) | 0.075 (12.37) | 0.982 | 0.010 * (1.74) | 0.044 (7.26) | 0.067 (11.80) | 0.981 | ||||
10 | −0.007 (−1.10) | 0.040 (6.61) | 0.069 (11.29) | 0.985 | −0.001 (−0.17) | 0.040 (6.93) | 0.062 (10.89) | 0.983 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrauskas, E.; Rupšys, P.; Narmontas, M.; Aleinikovas, M.; Beniušienė, L.; Šilinskas, B. Stochastic Models to Qualify Stem Tapers. Algorithms 2020, 13, 94. https://doi.org/10.3390/a13040094
Petrauskas E, Rupšys P, Narmontas M, Aleinikovas M, Beniušienė L, Šilinskas B. Stochastic Models to Qualify Stem Tapers. Algorithms. 2020; 13(4):94. https://doi.org/10.3390/a13040094
Chicago/Turabian StylePetrauskas, Edmundas, Petras Rupšys, Martynas Narmontas, Marius Aleinikovas, Lina Beniušienė, and Benas Šilinskas. 2020. "Stochastic Models to Qualify Stem Tapers" Algorithms 13, no. 4: 94. https://doi.org/10.3390/a13040094
APA StylePetrauskas, E., Rupšys, P., Narmontas, M., Aleinikovas, M., Beniušienė, L., & Šilinskas, B. (2020). Stochastic Models to Qualify Stem Tapers. Algorithms, 13(4), 94. https://doi.org/10.3390/a13040094