Hybrid Artificial Intelligence HFS-RF-PSO Model for Construction Labor Productivity Prediction and Optimization
Abstract
:1. Introduction
2. Literature Review on Construction Productivity Modeling
3. Research Methodology
3.1. CLP Data Identification
3.2. CLP Data Preparation
3.3. Hybrid Feature Selection (HFS)
3.3.1. ReliefF
3.3.2. Support Vector Machine (SVM)
3.3.3. Genetic Algorithm (GA)
3.4. CLP Predictive Modeling
3.4.1. Artificial Neural Network (ANN)
3.4.2. Adaptive Neuro Fuzzy Systems (ANFIS)
3.4.3. ANFIS-GA
3.4.4. Random Forest (RF)
3.5. CLP Optimization
- Goal 1: Predicted CLP () has minimum deviation from “targeted CLP” (, as shown in Equation (9), where is the relative importance of Goal 1, compared to Goal 2.
- Goal 2: Predicted CLP factors () have minimum deviation from “average value of factors” () in the data set, among all the possible combinations of improvement scenarios, as shown in Equation (10).
4. Experimental Results and Discussion
4.1. CLP Data Preparation and Feature Selection
4.2. CLP Modeling Comparison and Results
4.3. CLP Optimization Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hafez, S.M. Critical factors affecting construction labor productivity in Egypt. Am. J. Civ. Eng. 2014, 2, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Doloi, H. Application of AHP in improving construction productivity from a management perspective. Constr. Manag. Econ. 2008, 26, 841–854. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Mohamed Abdelhaleem, H. Impact of poor labor productivity on construction project cost. Int. J. Constr. Manag. 2020. [Google Scholar] [CrossRef]
- Gurmu, A.T. Tools for measuring construction materials management practices and predicting labor productivity in multistory building projects. J. Constr. Eng. Manag. 2019, 145. [Google Scholar] [CrossRef]
- Tsehayae, A.A.; Fayek, A.R. System model for analysing construction labour productivity. Constr. Innov. 2016, 16, 203–228. [Google Scholar] [CrossRef]
- Moselhi, O.; Khan, Z. Significance ranking of parameters impacting construction labour productivity. Constr. Innov. 2012, 12, 272–296. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Cao, M.T.; Jaya Mendrofa, A.Y. Dynamic feature selection for accurately predicting construction productivity using symbiotic organisms search-optimized least square support vector machine. J. Build. Eng. 2021, 35, 101973. [Google Scholar] [CrossRef]
- Khanzadi, M.; Nasirzadeh, F.; Mir, M.; Nojedehi, P. Prediction and improvement of labor productivity using hybrid system dynamics and agent-based modeling approach. Constr. Innov. 2017, 18, 2–19. [Google Scholar] [CrossRef]
- Tsehayae, A.A.; Fayek, A.R. Developing and Optimizing Context-Specific Fuzzy Inference System-Based Construction Labor Productivity Models. J. Constr. Eng. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Raoufi, M.; Fayek, A.R. Framework for Integrating an Artificial Neural Network and a Genetic Algorithm to Develop a Predictive Model for Construction Labor Productivity. In Proceedings of the Construction Research Congress 2020, Tempe, Arizona, 8–10 March 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 58–66. [Google Scholar]
- Durdyev, S.; Mbachu, J. On-site labour productivity of New Zealand construction industry: Key constraints and improvement measures. Australas. J. Constr. Econ. Build. 2011, 11, 18–33. [Google Scholar] [CrossRef] [Green Version]
- El-Gohary, K.M.; Aziz, R.F.; Abdel-Khalek, H.A. Engineering Approach Using ANN to Improve and Predict Construction Labor Productivity under Different Influences. J. Constr. Eng. Manag. 2017, 143. [Google Scholar] [CrossRef]
- Tsehayae, A.A.; Fayek, A.R. Identification and comparative analysis of key parameters influencing construction labour productivity in building and industrial projects. Can. J. Civ. Eng. 2014, 41, 878–891. [Google Scholar] [CrossRef] [Green Version]
- Jarkas, A.M. Factors influencing labour productivity in Bahrain’s construction industry. Int. J. Constr. Manag. 2015, 15, 94–108. [Google Scholar] [CrossRef]
- Montaser, N.M.; Mahdi, I.M.; Mahdi, H.A.; Rashid, I.A. Factors Affecting Construction Labor Productivity for Construction of Pre-Stressed Concrete Bridges. Int. J. Constr. Eng. Manag. 2018, 7, 193–206. [Google Scholar] [CrossRef]
- Alaghbari, W.; Al-Sakkaf, A.A.; Sultan, B. Factors affecting construction labour productivity in Yemen. Int. J. Constr. Manag. 2019, 19, 79–91. [Google Scholar] [CrossRef]
- Kazerooni, M.; Raoufi, M.; Fayek, A.R. Framework to Analyze Construction Labor Productivity Using Fuzzy Data Clustering and Multi-Criteria Decision-Making. In Proceedings of the Construction Research Congress 2020, Tempe, Arizona, 8–10 March 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 48–57. [Google Scholar]
- Durdyev, S.; Ismail, S.; Kandymov, N. Structural equation model of the factors affecting construction labor productivity. J. Constr. Eng. Manag. 2018, 144. [Google Scholar] [CrossRef]
- Irfan, M.; Zahoor, H.; Abbas, M.; Ali, Y. Determinants of labor productivity for building projects in Pakistan. J. Constr. Eng. Manag. Innov. 2020, 3, 85–100. [Google Scholar] [CrossRef]
- Agrawal, A.; Halder, S. Identifying factors affecting construction labour productivity in India and measures to improve productivity. Asian J. Civ. Eng. 2020, 21, 569–579. [Google Scholar] [CrossRef]
- Smith, S.D. Earthmoving Productivity Estimation Using Linear Regression Techniques. J. Constr. Eng. Manag. 1999, 125, 133–141. [Google Scholar] [CrossRef]
- Thomas, A.V.; Sudhakumar, J. Modelling masonry labour productivity using multiple regression. In Proceedings of the 30th Annual Association of Researchers in Construction Management Conference, ARCOM 2014, Portsmouth, UK, 1–3 September 2014; Association of Researchers in Construction Management: Portsmouth, UK, 2014; pp. 1345–1354. [Google Scholar]
- Hai, D.T.; Van Tam, N. Application of the Regression Model for Evaluating Factors Affecting Construction Workers’ Labor Productivity in Vietnam. Open Constr. Build. Technol. J. 2020, 13, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; AbouRizk, S.M. Measuring and modeling labor productivity using historical data. J. Constr. Eng. Manag. 2008, 134, 786–794. [Google Scholar] [CrossRef]
- Al-Kofahi, Z.G.; Mahdavian, A.; Oloufa, A. System dynamics modeling approach to quantify change orders impact on labor productivity 1: Principles and model development comparative study. Int. J. Constr. Manag. 2020. [Google Scholar] [CrossRef]
- Gerami Seresht, N.; Fayek, A.R. Dynamic modeling of multifactor construction productivity for equipment-intensive activities. J. Constr. Eng. Manag. 2018, 144. [Google Scholar] [CrossRef]
- Mirahadi, F.; Zayed, T. Simulation-based construction productivity forecast using neural-network-driven fuzzy reasoning. Autom. Constr. 2016, 65, 102–115. [Google Scholar] [CrossRef]
- Topuz, K.; Zengul, F.D.; Dag, A.; Almehmi, A.; Yildirim, M.B. Predicting graft survival among kidney transplant recipients: A Bayesian decision support model. Decis. Support. Syst. 2018, 106, 97–109. [Google Scholar] [CrossRef]
- Atallah, D.M.; Badawy, M.; El-Sayed, A.; Ghoneim, M.A. Predicting kidney transplantation outcome based on hybrid feature selection and KNN classifier. Multimed. Tools Appl. 2019, 78, 20383–20407. [Google Scholar] [CrossRef]
- Venkatesh, B.; Anuradha, J. A hybrid feature selection approach for handling a high-dimensional data. In Innovations in Computer Science and Engineering; Saini, H., Sayal, R., Govardhan, A., Buyya, R., Eds.; Springer: Singapore, 2019; pp. 365–373. [Google Scholar] [CrossRef]
- Piao, Y.; Ryu, K.H. A Hybrid Feature Selection Method Based on Symmetrical Uncertainty and Support Vector Machine for High-Dimensional Data Classification. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Kanazawa, Japan, 3–5 April 2017; Springer: Cham, Switzerland, 2017; pp. 721–727. [Google Scholar]
- Limsawasd, C.; Athigakunagorn, N. Optimizing Construction productivity and resources in building projects under uncertainty. In Proceedings of the 6th CSCE-CRC International Construction Specialty Conference 2017-Held as Part of the Canadian Society for Civil Engineering Annual Conference and General Meeting, Vancouver, BC, Canada, 31 May–3 June 2017; pp. 1120–1129. [Google Scholar]
- Golnaraghi, S.; Moselhi, O.; Alkass, S.; Zangenehmadar, Z. Predicting construction labor productivity using lower upper decomposition radial base function neural network. Eng. Rep. 2020, 2. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Kabir, H.M.D.; Akbari, M.; Khosravi, A.; Nahavandi, S.; Carmichael, D.G. ANN-based prediction intervals to forecast labour productivity. Eng. Constr. Archit. Manag. 2020, 27, 2335–2351. [Google Scholar] [CrossRef]
- Momade, M.H.; Shahid, S.; bin Hainin, M.R.; Nashwan, M.S.; Tahir Umar, A. Modelling labour productivity using SVM and RF: A comparative study on classifiers performance. Int. J. Constr. Manag. 2020. [Google Scholar] [CrossRef]
- Sarihi, M.; Shahhosseini, V.; Banki, M.T. Development and comparative analysis of the fuzzy inference system-based construction labor productivity models. Int. J. Constr. Manag. 2021. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Wang, Y. Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model. J. Build. Eng. 2020, 30, 101282. [Google Scholar] [CrossRef]
- Raoufi, M.; Fayek, A.R. Framework for Identification of Factors Affecting Construction Crew Motivation and Performance. J. Constr. Eng. Manag. 2018, 144. [Google Scholar] [CrossRef]
- Gerami Seresht, N.; Lourenzutti, R.; Fayek, A.R. A fuzzy clustering algorithm for developing predictive models in construction applications. Appl. Soft Comput. J. 2020, 96, 106679. [Google Scholar] [CrossRef]
- Goodarzizad, P.; Mohammadi Golafshani, E.; Arashpour, M. Predicting the construction labour productivity using artificial neural network and grasshopper optimisation algorithm. Int. J. Constr. Manag. 2021. [Google Scholar] [CrossRef]
- Fei, Y.; Min, H. Simultaneous feature with support vector selection and parameters optimization using GA-based SVM solve the binary classification. In Proceedings of the 2016 First IEEE International Conference on Computer Communication and the Internet, Wuhan, China, 13–15 October 2016; ICCCI: Piscataway, NJ, USA, 2016; pp. 426–433. [Google Scholar] [CrossRef]
- Tao, Z.; Huiling, L.; Wenwen, W.; Xia, Y. GA-SVM based feature selection and parameter optimization in hospitalization expense modeling. Appl. Soft Comput. J. 2019, 75, 323–332. [Google Scholar] [CrossRef]
- Jin, H.; Nahangi, M.; Goodrum, P.M.; Yuan, Y. Multiobjective Optimization for Scaffolding Space Planning in Industrial Piping Construction Using Model-Based Simulation Programming. J. Comput. Civ. Eng. 2020, 34. [Google Scholar] [CrossRef]
- Lin, C.L.; Lai, Y.C. An improved time-cost trade-off model with optimal labor productivity. J. Civ. Eng. Manag. 2020, 26, 113–130. [Google Scholar] [CrossRef]
- Shahbazi, B.; Akbarnezhad, A.; Rey, D.; Ahmadian Fard Fini, A.; Loosemore, M. Optimization of Job Allocation in Construction Organizations to Maximize Workers’ Career Development Opportunities. J. Constr. Eng. Manag. 2019, 145. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.J.; Pal, N.R. Imputation of missing data with neural networks for classification. Knowl. Based Syst. 2019, 182. [Google Scholar] [CrossRef]
- Nelwamondo, F.V.; Golding, D.; Marwala, T. A dynamic programming approach to missing data estimation using neural networks. Inf. Sci. 2013, 237, 49–58. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, G.; Yao, Z.; Jia, J.; Zhang, Y. Imputation of Missing Data in Time Series for Air Pollutants Using Long Short-Term Memory Recurrent Neural Networks. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 1293–1300. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, L.; Yu, L. An attribute value frequency-based instance weighting filter for naive Bayes. J. Exp. Theor. Artif. Intell. 2019, 31, 225–236. [Google Scholar] [CrossRef]
- Sandbhor, S.; Chaphalkar, N.B. Impact of outlier detection on neural networks based property value prediction. In Information Systems Design and Intelligent Applications; Satapathy, S., Bhateja, V., Somanah, R., Yang, X.S., Senkerik, R., Eds.; Springer: Singapore, Singapore, 2019; Volume 862, pp. 481–495. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. A Practical Approach to Feature Selection. In Proceedings of the Ninth International Workshop (ML92) at the Ninth International Machine Learning Conference, Aberdeen, Scotland, UK, 1–3 July 1992; Elsevier: Amsterdam, The Netherlands; pp. 249–256. [Google Scholar] [CrossRef]
- Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), Proceedings of the Machine Learning: ECML-94, Catania, Italy, 6–8 April 1994; Bergadano, F., De Raedt, L., Eds.; Spring: Berlin/Heidelberg, Germany, 1994; Volume 784, pp. 171–182. [Google Scholar] [CrossRef] [Green Version]
- Mathur, A.; Foody, G.M. Multiclass and binary SVM classification: Implications for training and classification users. IEEE Geosci. Remote Sens. Lett. 2008, 5, 241–245. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, T.; Qiu, G. Research on applicability of SVM kernel functions used in binary classification. Adv. Intell. Syst. Comput. 2014, 255, 833–844. [Google Scholar] [CrossRef]
- Huang, C.L.; Wang, C.J. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 2006, 31, 231–240. [Google Scholar] [CrossRef]
- Aličković, E.; Subasi, A. Breast cancer diagnosis using GA feature selection and rotation forest. Neural Comput. Appl. 2017, 28, 753–763. [Google Scholar] [CrossRef]
- Liu, X.; Song, Y.; Yi, W.; Wang, X.; Zhu, J. Comparing the random forest with the generalized additive model to evaluate the impacts of outdoor ambient environmental factors on scaffolding construction productivity. J. Constr. Eng. Manag. 2018, 144. [Google Scholar] [CrossRef]
- Taheri, K.; Hasanipanah, M.; Golzar, S.B.; Majid, M.Z.A. A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Eng. Comput. 2017, 33, 689–700. [Google Scholar] [CrossRef]
- Almási, A.D.; Woźniak, S.; Cristea, V.; Leblebici, Y.; Engbersen, T. Review of advances in neural networks: Neural design technology stack. Neurocomputing 2016, 174, 31–41. [Google Scholar] [CrossRef]
- Siraj, N.B.; Fayek, A.R.; Tsehayae, A.A. Development and optimization of artificial intelligence-based concrete compressive strength predictive models. Int. J. Struct. Civ. Eng. Res. 2016, 5, 156–167. [Google Scholar] [CrossRef]
- Moayedi, H.; Raftari, M.; Sharifi, A.; Jusoh, W.A.W.; Rashid, A.S.A. Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Eng. Comput. 2020, 36, 227–238. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.S.; Ahrentzen, S. Random forest based hourly building energy prediction. Energy Build. 2018, 171, 11–25. [Google Scholar] [CrossRef]
- Grandvalet, Y. Bagging equalizes influence. Mach. Learn. 2004, 55, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Mach. Learn. Knowl. Extr. 2018, 1, 157–191. [Google Scholar] [CrossRef] [Green Version]
- El-Ghandour, H.A.; Elbeltagi, E. Comparison of five evolutionary algorithms for optimization of water distribution networks. J. Comput. Civ. Eng. 2018, 32. [Google Scholar] [CrossRef]
Selected Factor | Scale of Measure |
---|---|
(1) Crew size | Integer (Total number of crew members) |
(2) Crew composition | Proportion (Ratio journeyman to apprentice to helper) |
(3) Treatment of craftsperson by foreman | 1–5 Predetermined rating |
(4) Craftsperson trust in foreman | 1–5 Predetermined rating |
(5) Level of interruption and disruption | Integer (Number of interruptions and disruptions per day) |
(6) Complexity of task | 1–5 Predetermined rating |
(7) Working condition (dust and fumes) | 1–5 Predetermined rating |
(8) Location of work scope (elevation) | Real number (elevation, m) |
(9) Congestion of work area | Real number (ratio of actual peak manpower to actual average manpower) |
(10) Fairness in performance review of crew by foreman | 1–5 Predetermined rating |
(11) Ground conditions | 1–5 Predetermined rating |
(12) Quality audits | Real number (Number of inspections per month) |
(13) Risk monitoring and control | 1–5 Predetermined rating |
(14) Crisis management | 1–5 Predetermined rating |
ANFIS-GA Model No. | Population Size | RMSE | |
---|---|---|---|
Training | Testing | ||
1 | 12 | 0.159 | 0.185 |
2 | 18 | 0.165 | 0.191 |
3 | 25 | 0.162 | 0.172 |
4 | 30 | 0.163 | 0.19 |
Model | Training Dataset | Testing Dataset | ||
---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |
ANN | 0.164 | 0.130 | 0.165 | 0.135 |
ANFIS | 0.042 | 0.034 | 0.176 | 0.138 |
ANFIS-GA | 0.162 | 0.096 | 0.172 | 0.129 |
RF | 0.074 | 0.051 | 0.137 | 0.112 |
Selected Factor and CLP | Average Value in Normalized Data Set |
---|---|
(1) Crew size | 0.302 |
(2) Crew composition | 0.289 |
(3) Treatment of craftsperson by foreman | 0.569 |
(4) Craftsperson trust in foreman | 0.518 |
(5) Level of interruption and disruption | 0.162 |
(6) Complexity of task | 0.500 |
(7) Working condition (dust and fumes) | 0.218 |
(8) Location of work scope (elevation) | 0.132 |
(9) Congestion of work area | 0.438 |
(10) Fairness in performance review of crew by foreman | 0.694 |
(11) Ground conditions | 0.368 |
(12) Quality audits | 0.832 |
(13) Risk monitoring and control | 0.264 |
(14) Crisis management | 0.634 |
Construction labor productivity | 0.259 |
ω | 0.27 | 0.40 | 0.50 | 0.60 | 0.73 | 1.00 | |
---|---|---|---|---|---|---|---|
0.45 | Z | 0.041 | 0.045 | 0.038 | 0.056 | 0.033 | 1.15 × 10−5 |
0.374 | 0.430 | 0.441 | 0.439 | 0.448 | 0.449 | ||
0.60 | Z | 0.042 | 0.129 | 0.049 | 0.078 | 0.055 | 1.19 × 10−6 |
0.386 | 0.565 | 0.586 | 0.599 | 0.596 | 0.599 | ||
0.75 | Z | 0.057 | 0.049 | 0.079 | 0.124 | 0.116 | 0.0005 |
0.522 | 0.561 | 0.616 | 0.649 | 0.671 | 0.721 | ||
0.90 | Z | 0.071 | 0.190 | 0.184 | 0.186 | 0.157 | 0.032 |
0.555 | 0.558 | 0.664 | 0.678 | 0.685 | 0.728 | ||
1.00 | Z | 0.152 | 0.146 | 0.205 | 0.189 | 0.162 | 0.054 |
0.713 | 0.697 | 0.714 | 0.728 | 0.737 | 0.769 |
Selected Factor and CLP | Optimum Value | Deviation |
---|---|---|
(1) Crew size | 0.326 | 0.024 |
(2) Crew composition | 0.364 | 0.075 |
(3) Treatment of craftsperson by foreman | 0.587 | 0.018 |
(4) Craftsperson trust in foreman | 0.535 | 0.017 |
(5) Level of interruption and disruption | 0.043 | −0.119 |
(6) Complexity of task | 0.549 | 0.0490 |
(7) Working condition (dust and fumes) | 0.108 | −0.110 |
(8) Location of work scope (elevation) | 0.176 | 0.044 |
(9) Congestion of work area | 0.452 | 0.014 |
(10) Fairness in performance review of crew by foreman | 0.808 | 0.114 |
(11) Ground conditions | 0.372 | 0.004 |
(12) Quality audits | 0.733 | −0.099 |
(13) Risk monitoring and control | 0.271 | 0.007 |
(14) Crisis management | 0.629 | −0.005 |
Construction labor productivity | 0.522 | 0.263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, S.; Fayek, A.R.; Sumati, V. Hybrid Artificial Intelligence HFS-RF-PSO Model for Construction Labor Productivity Prediction and Optimization. Algorithms 2021, 14, 214. https://doi.org/10.3390/a14070214
Ebrahimi S, Fayek AR, Sumati V. Hybrid Artificial Intelligence HFS-RF-PSO Model for Construction Labor Productivity Prediction and Optimization. Algorithms. 2021; 14(7):214. https://doi.org/10.3390/a14070214
Chicago/Turabian StyleEbrahimi, Sara, Aminah Robinson Fayek, and Vuppuluri Sumati. 2021. "Hybrid Artificial Intelligence HFS-RF-PSO Model for Construction Labor Productivity Prediction and Optimization" Algorithms 14, no. 7: 214. https://doi.org/10.3390/a14070214
APA StyleEbrahimi, S., Fayek, A. R., & Sumati, V. (2021). Hybrid Artificial Intelligence HFS-RF-PSO Model for Construction Labor Productivity Prediction and Optimization. Algorithms, 14(7), 214. https://doi.org/10.3390/a14070214