Kleene Algebra to Compute Invariant Sets of Dynamical Systems
Abstract
:1. Introduction
- The first approach is based on sampling. It has been used for instance by Saint Pierre [21] to rigorously compute viability kernel, which is a specific type of controlled invariant set. Bobiti and Lazar [22] also used a sampling-based method for stability verification of both continuous and discrete-time nonlinear systems. To get guaranteed results, an interval integration is often needed (see e.g., [23,24,25]).
- The second approach is based on Lyapunov theory [3,26] and is convenient for proving asymptotic stability of problems with an infinite time horizon. The principle is to find a parameter vector or a Lyapunov-like function such that the set
- The fourth approach is based a polygonal decomposition of the state space [30,31] and corresponds to the approach we will consider in the paper. For instance, in [30], a triangulated region yields an index filtration for a Morse decomposition of the flow on the system [32], which approximates the flow arbitrarily closely.
2. Lattices
2.1. Definitions
2.2. Machine Lattice
- The gray square represents .
- The element k is greater than f, since it is at its top right.
- The grid made with blue dots corresponds to .
- The variables all belong to , and we have and .
- The red polygon is a sub-lattice of . Its bottom is and its top is .
- The element is inside . Thus, there exists an element n in which corresponds to the smallest element in , which is larger than i. There exists also an element m in that corresponds to the greatest element in , which is smaller than i.
- The smallest machine interval containing e is .
3. Kleene Algebra
3.1. Definition
3.2. Intervals
4. Kleene Algebra of Automorphisms
4.1. Automorphisms
- (1)
- We have
- (2)
- We now want to prove the inverse inclusion: .
4.2. Factorization
4.3. Intervals
4.4. Algorithm to Find the Greatest Fixed Point
5. Application to Dynamical Systems
5.1. Greatest Positive Invariant
5.2. Paths
5.3. Cover and Automorphism
5.4. Invariant Set
6. Test Cases
6.1. Negative Invariant
6.2. Forward Reach Set
6.3. Backward Reach Set
6.4. Control Forward Reach Set
6.5. Minimal Robust Positive Invariant Set
6.6. Path Planning
7. Conclusions
- A link between Kleene algebra and invariant sets. This allowed us to derive a simple fixed point method able to compute guaranteed inner and outer approximations of invariant sets.
- The treatment of toy examples for which no other existing approach is able to deal with.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaulin, L. Automation for Robotics; ISTE: Eugene, OR, USA, 2015. [Google Scholar]
- Jaulin, L. Mobile Robotics; ISTE: Eugene, OR, USA, 2015. [Google Scholar]
- Blanchini, F.; Miani, S. Set-Theoretic Methods in Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Esik, Z.; Fahrenberg, U.; Legay, A.; Quaas, K. An Algebraic Approach to Energy Problems II, The Algebra of Energy Functions. Acta Cybern. 2017, 23, 229–268. [Google Scholar] [CrossRef]
- Wan, J.; Vehi, J.; Luo, N. A numerical approach to design control invariant sets for constrained nonlinear discrete-time systems with guaranteed optimality. J. Glob. Optim. 2009, 44, 395–407. [Google Scholar] [CrossRef]
- Olaru, S.; Dona, J.D.; Seron, M.; Stoican, F. Positive invariant sets for fault tolerant multisensor control schemes. Int. J. Control 2010, 83, 2622–2640. [Google Scholar] [CrossRef]
- Althoff, D.; Althoff, M.; Scherer, S. Online Safety Verification of Trajectories for Unmanned Flight with Offline Computed Robust Invariant Sets. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Asarin, E.; Dang, T.; Maler, O. The d/dt tool for verification of hybrid systems. In Proceedings of the International Conference on Computer Aided Verification, Los Angeles, CA, USA, 21–24 July 2002; pp. 365–370. [Google Scholar]
- Tabuada, P. Verification and Control of Hybrid Systems: A Symbolic Approach; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mitchell, I. Comparing forward and backward reachability as tools for safety analysis. In Hybrid Systems: Computation and Control; Bemporad, A., Bicchi, A., Buttazzo, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 428–443. [Google Scholar]
- Tahir, F.; Jaimoukha, M. Low-Complexity Polytopic Invariant Sets for Linear Systems Subject to Norm-Bounded Uncertainty. IEEE Trans. Autom. Control 2015, 60, 1416–1421. [Google Scholar] [CrossRef] [Green Version]
- Roux, P.; Jobredeaux, R.; Garoche, P.; Feron, E. A generic ellipsoid abstract domain for linear time invariant systems. In Proceedings of the Hybrid Systems: Computation and Control, HSCC’12, Beijing, China, 17–19 April 2012; pp. 105–114. [Google Scholar]
- Bertsekas, D. Infinite-time reachability of state-space regions by using feedback Control. IEEE Trans. Autom. Control 1972, 17, 604–613. [Google Scholar] [CrossRef]
- Athanasopoulos, N.; Smpoukis, K.; Jungers, R. Invariant Sets Analysis for Constrained Switching Systems. IEEE Control Syst. Lett. 2017, 1, 256–261. [Google Scholar] [CrossRef]
- Allamigeon, X.; Gaubert, S.; Goubault, E.; Putot, S.; Stott, N. A fast method to compute disjunctive quadratic invariants of numerical programs. Acm Trans. Embed. Comput. Syst. 2017, 6, 1–19. [Google Scholar] [CrossRef]
- Guernic, C.L.; Girard, A. Reachability analysis of linear systems using support functions. Nonlinear Anal. 2009, 4, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Ghorbal, K.; Goubault, E.; Putot, S. A logical product approach to zonotope intersection. In Computer Aided Verification, CAV 2010; Touili, T., Cook, B., Jackson, P., Eds.; Springer: Edinburgh, UK, 2010. [Google Scholar]
- Asarin, E.; Dang, T.; Girard, A. Hybridization methods for the analysis of non-linear systems. Acta Inform. 2007, 7, 451–476. [Google Scholar] [CrossRef] [Green Version]
- Girard, A. Computation and stability analysis of limit cycles in piecewise linear hybrid systems. In Proceedings of the 1st IFAC Conference on Analysis and Design of Hybrid Systems, St Malo, France, 16–18 June 2003; pp. 181–186. [Google Scholar]
- Sankaranarayanan, S.; Dang, T.; Ivancic, F. Symbolic model checking of hybrid systems using template polyhedra. Tacas Lect. Notes Comput. Sci. 2008, 4963, 188–202. [Google Scholar]
- Saint-Pierre, P. Approximation of the viability kernel. Appl. Math. Optim. 1994, 29, 187–209. [Google Scholar] [CrossRef] [Green Version]
- Bobiti, R.; Lazar, M. Automated-Sampling-Based Stability Verification and DOA Estimation for Nonlinear Systems. IEEE Trans. Autom. Control 2018, 63, 3659–3674. [Google Scholar] [CrossRef]
- Goubault, E.; Mullier, O.; Putot, S.; Kieffer, M. Inner approximated reachability analysis. In Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, HSCC’14, Berlin, Germany, 15–17 April 2014; pp. 163–172. [Google Scholar]
- Wilczak, D.; Zgliczynski, P. Cr-Lohner algorithm. Schedae Inform. 2011, 20, 9–46. [Google Scholar]
- Goubault, E.; Putot, S. Forward Inner-Approximated Reachability of Non-Linear Continuous Systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control, Pittsburgh, PA, USA, 18–20 April 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Giesl, P.; Hafstein, S. Review on computational methods for Lyapunov functions. Discret. Contin. Dyn. Syst. 2015, 8, 2291–2331. [Google Scholar]
- Henrion, D.; Korda, M. Convex computation of the region of attraction of polynomial control systems. IEEE Trans. Autom. Control 2013, 59, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Ratschan, S.; She, Z. Providing a Basin of Attraction to a Target Region of Polynomial Systems by Computation of Lyapunov-like Functions. SIAM J. Control Optim. 2010, 48, 4377–4394. [Google Scholar] [CrossRef]
- Oustry, A.; Tacchi, M.; Henrion, D. Inner approximations of the maximal positively invariant set for polynomial dynamical systems. IEEE Control Syst. Lett. 2019, 3, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Boczko, E.; Kalies, W.; Mischaikow, K. Polygonal approximation of flows. Topol. Its Appl. 2007, 154, 2501–2520. [Google Scholar] [CrossRef] [Green Version]
- Mézo, T.L.; Jaulin, L.; Zerr, B. An interval approach to compute invariant sets. IEEE Trans. Autom. Control 2017, 62, 4236–4243. [Google Scholar] [CrossRef]
- Conley, C. Isolated Invariant Sets and the Morse Index; American Mathematical Society: Providence, RI, USA, 1991. [Google Scholar]
- Frehse, G. PHAVer: Algorithmic Verification of Hybrid Systems. Int. J. Softw. Tools Technol. Transf. 2008, 10, 23–48. [Google Scholar] [CrossRef]
- Frehse, G.; Le Guernic, C.; Donzé, A.; Cotton, S.; Ray, R.; Lebeltel, O.; Ripado, R.; Girard, A.; Dang, T.; Maler, O. SpaceEx: Scalable Verification of Hybrid Systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV), Snowbird, UT, USA, 14–20 July 2011. [Google Scholar]
- LaValle, S. Planning Algorithm; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Kalies, W.; Mischaikow, K.; Vandervorst, R. Lattice Structures for Attractors. Found. Comput. Math. 2016, 16, 1151–1191. [Google Scholar] [CrossRef] [Green Version]
- Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002; ISBN 0521784514. [Google Scholar]
- Monniaux, D. The pitfalls of verifying floating-point computations. Acm Trans. Program. Lang. Syst. 2008, 30, 1–12. [Google Scholar] [CrossRef]
- Mézo, T.L.; Jaulin, L.; Zerr, B. Bracketing the solutions of an ordinary differential equation with uncertain initial conditions. Appl. Math. Comput. 2018, 318, 70–79. [Google Scholar]
- Mézo, T.L.; Jaulin, L.; Zerr, B. Bracketing backward reach sets of a dynamical system. Int. J. Control 2019, 93, 2528–2540. [Google Scholar] [CrossRef] [Green Version]
- Kozen, D. On Kleene algebras and closed semirings. In International Symposium on Mathematical Foundations of Computer Science; Springer: Berlin/Heidelberg, Germany, 1990; pp. 26–47. [Google Scholar]
- Kozen, D. A completeness theorem for Kleene algebras and the algebra of regular events. In Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science, LICS, Amsterdam, The Netherlands, 15–18 July 1991; pp. 214–225. [Google Scholar]
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Lhommeau, M.; Hardouin, L.; Cottenceau, B.; Jaulin, L. Interval Analysis and Dioid: Application to Robust Controller Design for Timed Event Graphs. Automatica 2004, 40, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Rohou, S.; Jaulin, L.; Mihaylova, M.; Bars, F.L.; Veres, S. Guaranteed Computation of Robots Trajectories. Robot. Auton. Syst. 2017, 93, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Monnet, D.; Ninin, J.; Jaulin, L. Computing an inner and an outer approximation of the viability kernel. Reliab. Comput. 2016, 22, 138–148. [Google Scholar]
- Lhommeau, M.; Jaulin, L.; Hardouin, L. Capture Basin Approximation using Interval Analysis. Int. J. Adapt. Control Signal Process. 2011, 25, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.; Guernic, C.L.; Maler, O. Computing reachable states for nonlinear biological models. Comput. Methods Syst. Biol. 2009, 5688, 126–141. [Google Scholar]
- Ramdani, N.; Nedialkov, N. Computing Reachable Sets for Uncertain Nonlinear Hybrid Systems using Interval Constraint Propagation Techniques. Nonlinear Anal. Hybrid Syst. 2011, 5, 149–162. [Google Scholar] [CrossRef]
- Chen, X. Reachability Analysis of Non-LinearHybrid Systems Using Taylor Models. Ph.D. Thesis, University of Aachen, Aachen, Germany, 2015. [Google Scholar]
- Girard, A.; Guernic, C.L.; Maler, O. Efficient computation of reachable sets of linear time-invariant systems with inputs. Hybrid Syst. Comput. Control 2006, 3927, 257–271. [Google Scholar]
- Meslem, N.; Loukkas, N.; Martinez, J. Using set invariance to design robust interval observers for discrete time linear systems. Int. J. Robust Nonlinear Control 2018, 28, 3623–3639. [Google Scholar] [CrossRef]
- Rakovic, S.V.; Kerrigan, E.C.; Kouramas, K.I.; Mayne, D.Q. Invariant approximations of the minimal robust positively invariant set. IEEE Trans. Autom. Control 2005, 50, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Pérez, T. Spatial Planning: A Configuration Space Approach. IEEE Trans. Comput. 1983, 32, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Rungger, M.; Zamani, M. SCOTS: A Tool for the Synthesis of Symbolic Controllers. In Proceedings of the HSCC 2016, Vienna, Austria, 12–14 April 2016. [Google Scholar] [CrossRef]
- Jaulin, L. Path Planning Using Intervals and Graphs. Reliab. Comput. 2001, 7, 1–15. [Google Scholar] [CrossRef]
- Pepy, R.; Kieffer, M.; Walter, E. Reliable Robust Path Planning with Application to Mobile Robots. Int. J. Appl. Math. Comput. Sci. 2009, 19, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Crépon, P.; Panchea, A.; Chapoutot, A. Reliable Motion Plannning for a Mobile Robot. In Proceedings of the IEEE International Conference on Robotic Computing, Laguna Hills, CA, USA, 31 January–2 February 2018. [Google Scholar]
- Belta, C.; Yordanov, B.; Gol, E. Formal Methods for Discrete-Time Dynamical Systems; Studies in Systems, Decision and Control; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
Kleene algebra | |
Addition | |
Product | |
Associativity | |
Commutativity | |
Distributivity | |
Zero | |
One | |
Annihilation | |
Idempotence | |
Partial order | |
Kleene star |
Kleene Algebra | |
---|---|
Addition | |
Product | |
Associativity | |
Commutativity | |
Distributivity | |
Zero | |
One | |
Annihilation | |
Idempotency | |
Partial order | |
Kleene star |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Mézo, T.; Jaulin, L.; Massé, D.; Zerr, B. Kleene Algebra to Compute Invariant Sets of Dynamical Systems. Algorithms 2022, 15, 90. https://doi.org/10.3390/a15030090
Le Mézo T, Jaulin L, Massé D, Zerr B. Kleene Algebra to Compute Invariant Sets of Dynamical Systems. Algorithms. 2022; 15(3):90. https://doi.org/10.3390/a15030090
Chicago/Turabian StyleLe Mézo, Thomas, Luc Jaulin, Damien Massé, and Benoit Zerr. 2022. "Kleene Algebra to Compute Invariant Sets of Dynamical Systems" Algorithms 15, no. 3: 90. https://doi.org/10.3390/a15030090
APA StyleLe Mézo, T., Jaulin, L., Massé, D., & Zerr, B. (2022). Kleene Algebra to Compute Invariant Sets of Dynamical Systems. Algorithms, 15(3), 90. https://doi.org/10.3390/a15030090