Comparing the Reasoning Capabilities of Equilibrium Theories and Answer Set Programs
Abstract
:1. Introduction
2. Logical Preliminaries and Basic Definitions
Equilibrium Logic
- if Π is stable and ;
- if Π is stable and
- if Π is stable and
3. Equivalence Notions
- holds iff for any further theory Π, .
- holds iff for any set X of atoms, .
- holds iff for any further theory Π, .
- holds iff for any set X of atoms, .
- iff iff .
- implies for .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
- (a)
- is not an -model of . Then, Y obviously cannot become an equilibrium model of , or
- (b)
- is an -model of but then there exists such that is an -model of . By definition of , is then also an -model of , and so Y cannot be an equilibrium model of .
Uniform Equivalence
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
4. Relativised Equivalence
- (i)
- and are strongly equivalent relative to , in symbols , iff for any (empty or non-empty)set Σ of formulas, and are equivalent, i.e., have the same equilibrium models.
- (ii)
- and are uniformly equivalent relative to , in symbols , iff for any (empty or non-empty )set X of literals, and are equivalent, i.e., have the same equilibrium models.
- we write if for any further theory Π in , ;
- we write if for any set X of atoms, .
5. Entailment Relations
- we write if for any further theory Π ;
- we write if for any set X of atoms, .
- (1)
- (2)
- (i)
- classically entails .
- (ii)
- For any model of such that , .
6. Projective Concepts
6.1. Basic Definitions
- (i)
- We say that is a B-consequence of , in symbols , if for any B-formula φ, .
- (ii)
- We say that and are B-inseparable (for ω), in symbols , if and .
- We write (for strong B-consequence) if for any Π and B-formula φ, .
- Similarly for strong B-inseparability: if for any Π and B-formula φ, and .
- Relativised versions are easily obtained. e.g., strong B-consequence, relative to A, in symbols , obtains when for any set Π of A formulas and B-formula φ, .
- Similarly, strong inseparability relative to A is denoted by .
6.2. Forks and Projective B-entailment for Theories
- (i)
- ,
- (ii)
- In addition, if is A-respectful, then
- or and .
- is A-feasible
6.3. Projective B-entailment for Forks
7. An Example Case: Reasoning about Policies
Inter-Policy Relations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASP | Answer Set Programming |
the logic of here-and-there | |
PSE | projective strong equivalence |
Appendix A. Proofs of Results
- 1.
- 2.
- is A-feasible and
References
- Pearce, D. Equilibrium logic. Ann. Math. Artif. Intell. 2006, 47, 3–41. [Google Scholar] [CrossRef]
- Lifschitz, V.; Pearce, D.; Valverde, A. Strongly equivalent logic programs. ACM Trans. Comput. Log. 2001, 2, 526–541. [Google Scholar] [CrossRef]
- Eiter, T.; Tompits, H.; Woltran, S. On solution correspondences in answer-set programming. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, UK, 30 July–5 August 2005; Kaelbling, L.P., Saffiotti, A., Eds.; Professional Book Center: London, UK, 2005; pp. 97–102. [Google Scholar]
- Eiter, T.; Fink, M. Uniform equivalence of logic programs under the stable model semantics. In Logic Programming, Proceedings of the 19th International Conference, ICLP 2003, Mumbai, India, 9–13, December 2003; Palamidessi, C., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2916, pp. 224–238. [Google Scholar]
- Woltran, S. Characterizations for relativized notions of equivalence in answer set programming. In Logics in Artificial Intelligence, Proceedings of the 9th European Conference, JELIA 2004, Lisbon, Portugal, 27–30 September 2004; Alferes, J.J., Leite, J.A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3229, pp. 161–173. [Google Scholar]
- Maher, M. Equivalences of Logic Programs. In Foundations of Deductive Databases and Logic Programming; Minker, J., Ed.; Morgan Kaufmann: Burlington, MA, UDA, 1988; pp. 627–658. [Google Scholar]
- Sagiv, Y. Optimising DATALOG Programs. In Foundations of Deductive Databases and Logic Programming; Minker, J., Ed.; Morgan Kaufmann: Burlington, MA, UDA, 1988; pp. 659–698. [Google Scholar]
- Truszczynski, M. Strong and uniform equivalence of nonmonotonic theories—An algebraic approach. Ann. Math. Artif. Intell. 2006, 48, 245–265. [Google Scholar] [CrossRef] [Green Version]
- Turner, H. Strong equivalence for causal theories. In Proceedings of the 7th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04), Fort Lauderdale, FL, USA, 6–8 January 2004; Lifschitz, V., Niemelä, I., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2004; Volume 2923, pp. 289–301. [Google Scholar]
- Baumann, R. Normal and strong expansion equivalence for argumentation frameworks. Artif. Intell. 2012, 193, 18–44. [Google Scholar] [CrossRef] [Green Version]
- Oikarinen, E.; Woltran, S. Characterizing strong equivalence for argumentation frameworks. Artif. Intell. 2011, 175, 1985–2009. [Google Scholar] [CrossRef] [Green Version]
- Bernreiter, M.; Maly, J.; Woltran, S. Choice logics and their computational properties. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Virtual, 19–27 August 2021; pp. 1794–1800. [Google Scholar]
- Faber, W.; Konczak, K. Strong equivalence for logic programs with preferences. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, UK, 30 July–5 August 2005; Professional Book Center: London, UK, 2005; pp. 430–435. [Google Scholar]
- Faber, W.; Truszczynski, M.; Woltran, S. Abstract preference frameworks—A unifying perspective on separability and strong equivalence. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013; des Jardins, M., Littman, M.L., Eds.; AAAI Press: Palo Alto, CA, USA, 2013; pp. 297–303. [Google Scholar]
- Eiter, T.; Fink, M.; Tompits, H.; Woltran, S. Simplifying logic programs under uniform and strong equivalence. In Proceedings of the LPNMR 2004, Fort Lauderdale, FL, USA, 6–8 January 2004; Lifschitz, V., Niemelä, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2923, pp. 87–99. [Google Scholar]
- Gonçalves, R.; Knorr, M.; Leite, J. You can’t always forget what you want: On the limits of forgetting in answer set programming. In Proceedings of the ECAI 2016, The Hague, The Netherlands, 29 August–2 September 2016; Fox, M.S., Kaminka, G.A., Eds.; IOS Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Shmueli, O. Decidability and Expressiveness Aspects of Logic Queries. In Proceedings of the 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’87), San Diego, CA, USA, 23–25 March 1987; ACM Press: New York, NY, USA, 1987; pp. 237–249. [Google Scholar]
- Botoeva, E.; Lutz, C.; Ryzhikov, V.; Wolter, F.; Zakharyaschev, M. Query inseparability for ALC ontologies. Artif. Intell. 2019, 272, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Aguado, F.; Cabalar, P.; Pearce, D.; Pérez, G.; Vidal, C. A denotational semantics for equilibrium logic. Theory Pract. Log. Program. 2015, 15, 620–634. [Google Scholar] [CrossRef] [Green Version]
- Aguado, F.; Cabalar, P.; Fandinno, J.; Pearce, D.; Pérez, G.; Vidal, C. Forgetting auxiliary atoms in forks. Artif. Intell. 2019, 275, 575–601. [Google Scholar] [CrossRef]
- Heyting, A. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin 1930, 16, 42–56. [Google Scholar]
- Cabalar, P.; Pearce, D.; Valverde, A. Stable reasoning. J. Appl. Non Class. Logics 2017, 27, 238–254. [Google Scholar] [CrossRef]
- van Dalen, D. Logic and Structure; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pearce, D. A new logical characterisation of stable models and answer sets. In Non-Monotonic Extensions of Logic Programming, Proceedings of the NMELP ’96, Bad Honnef, Germany, 5–6 September 1996; Dix, J., Pereira, L.M., Przymusinski, T.C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1216, pp. 57–70. [Google Scholar]
- Gelfond, M.; Lifschitz, V. The stable models semantics for logic programming. In Proceedings of the 5th International Conference on Logic Programming, Seattle, WA, USA, 15–19 August 1988; Kowalski, R., Bowen, A., Eds.; MIT Press: Cambridge, MA, USA, 1988; pp. 1070–1108. [Google Scholar]
- Fink, M. Equivalences in answer-set programming by countermodels in the logic of here-and-there. In Logic Programming, Proceedings of the 24th International Conference, ICLP 2008, Udine, Italy, 9–13 December 2008; Banda, M.G.d., Pontelli, E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5366, pp. 99–113. [Google Scholar]
- Pearce, D.; Valverde, A. Uniform equivalence for equilibrium logic and logic programs. In Logic Programming and Nonmonotonic Reasoning, Proceedings of the 7th International Conference, LPNMR 2004, Fort Lauderdale, FL, USA, 6–8 January 2004; Lifschitz, V., Niemelä, I., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2923, pp. 194–206. [Google Scholar]
- Oetsch, J.; Seidl, M.; Tompits, H.; Woltran, S. Beyond uniform equivalence between answer-set programs. ACM Trans. Comput. Log. 2021, 22, 2:1–2:46. [Google Scholar] [CrossRef]
- Woo, T.Y.C.; Lam, S.S. Authorization in distributed systems: A new approach. J. Comput. Secur. 1993, 2, 107–136. [Google Scholar] [CrossRef]
- Bonatti, P.A.; Samarati, P. Logics for authorization and security. In Logics for Emerging Applications of Databases; Chomicki, J., Meyden, R.V., Saake, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 277–323. [Google Scholar]
- Bonatti, P.A. Datalog for security, privacy and trust. In Datalog Reloaded; de Moor, O., Gottlob, G., Furche, T., Sellers, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–36. [Google Scholar]
- Bonatti, P.A. Logic-based authorization languages. In Encyclopedia of Cryptography and Security, 2nd ed.; Henk, C., van Tilborg, A., Jajodia, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 734–736. [Google Scholar]
- Craven, R.; Lobo, J.; Ma, J.; Russo, A.; Lupu, E.C.; Bandara, A.K. Expressive policy analysis with enhanced system dynamicity. In Proceedings of the 2009 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2009, Sydney, Australia, 10–12 March 2009; Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V., Eds.; ACM: New York, NY, USA, 2009; pp. 239–250. [Google Scholar]
- Gelfond, M.; Lobo, J. Authorization and obligation policies in dynamic systems. In Logic Programming, Proceedings of the 24th International Conference, ICLP 2008, Udine, Italy, 9–13 December2008, Proceedings; Banda, M.G.d., Pontelli, E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5366, pp. 22–36. [Google Scholar]
- Pearce, D.; Tompits, H.; Woltran, S. Relativised equivalence in equilibrium logic and its applications to prediction and explanation: Preliminary report. In Proceedings of the LPNMR’07 Workshop on Correspondence and Equivalence for Nonmonotonic Theories (CENT2007), Tempe, AZ, USA, 14 May 2007; Volume 265. [Google Scholar]
- Lifschitz, V.; Pearce, D.; Valverde, A. A characterization of strong equivalence for logic programs with variables. In Logic Programming and Nonmonotonic Reasoning, Proceedings of the 9th International Conference, LPNMR 2007, Tempe, AZ, USA, 15–17 May 2007; Baral, C., Brewka, G., Schlipf, J.S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4483, pp. 188–200. [Google Scholar]
- Geibinger, T.; Tompits, H. Characterising relativised strong equivalence with projection for non-ground answer-set programs. In Logics in Artificial Intelligence, Proceedings of the 16th European Conference, JELIA 2019, Rende, Italy, 7–11 May 2019; Calimeri, F., Leone, N., Manna, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11468, pp. 542–558. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fandinno, J.; Pearce, D.; Vidal, C.; Woltran, S. Comparing the Reasoning Capabilities of Equilibrium Theories and Answer Set Programs. Algorithms 2022, 15, 201. https://doi.org/10.3390/a15060201
Fandinno J, Pearce D, Vidal C, Woltran S. Comparing the Reasoning Capabilities of Equilibrium Theories and Answer Set Programs. Algorithms. 2022; 15(6):201. https://doi.org/10.3390/a15060201
Chicago/Turabian StyleFandinno, Jorge, David Pearce, Concepción Vidal, and Stefan Woltran. 2022. "Comparing the Reasoning Capabilities of Equilibrium Theories and Answer Set Programs" Algorithms 15, no. 6: 201. https://doi.org/10.3390/a15060201
APA StyleFandinno, J., Pearce, D., Vidal, C., & Woltran, S. (2022). Comparing the Reasoning Capabilities of Equilibrium Theories and Answer Set Programs. Algorithms, 15(6), 201. https://doi.org/10.3390/a15060201