Optimization of Compensation Network for a Wireless Power Transfer System in Dynamic Conditions: A Circuit Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lumped Parameter Computation
2.2. Compensation Network
2.3. Inverse Problem
3. Results and Discussion
3.1. Selection of Promising Individuals
- Output power in aligned condition between 0.5 kW and 3.3 kW;
- Ratio of maximum output power to the power in aligned condition lower than 4.5;
- Power transfer efficiency in aligned condition higher than 0.8.
- The profile of the transferred power, PL(x), as a function of the receiving coil position, x;
- The transferred power in the aligned position, PL(0);
- The profile of the per unit (p.u.) transferred power, PL,p.u(x), defined as the ratio of PL(x) to PL(0);
- The maximum p.u. transferred power, PL,p.u.,max;
- The maximum position, xpmax, where PL,p.u(x) ≥ 1;
- The power transfer efficiency in the aligned position;
- The maximum of the power per unit PL,p.u., PL,p.u.,max.
3.2. Results of Problem 1
3.3. Results of Problem 2 and CNr Made of Capacitors or Inductors
3.4. Results of Problem 2 and CNr Made Only of Capacitors
3.5. Results of Problem 3 and CNr Made Only of Capacitors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barmada, S.; Tucci, M.; Fontana, N.; Dghais, W.; Raugi, M. Design and Realization of a Multiple Access Wireless Power Transfer System for Optimal Power Line Communication Data Transfer. Energies 2019, 12, 988. [Google Scholar] [CrossRef] [Green Version]
- Gaire, P.; Vital, D.; Khan, M.R.; Chibane, C.; Bhardwaj, S. Adhoc mobile power connectivity using a wireless power transmission grid. Sci. Rep. 2021, 11, 17867. [Google Scholar] [CrossRef] [PubMed]
- Kindl, V.; Frivaldsky, M.; Zavrel, M.; Pavelek, M. Generalized Design Approach on Industrial Wireless Chargers. Energies 2020, 13, 2697. [Google Scholar] [CrossRef]
- Shen, S.; Clerckx, B. Joint Waveform and Beamforming Optimization for MIMO Wireless Power Transfer. IEEE Trans. Commun. 2021, 69, 5441–5455. [Google Scholar] [CrossRef]
- Naik, M.K.; Bertoluzzo, M.; Buja, G. Design of a contactless battery charging system. In Proceedings of the 2013 Africon, Pointe aux Piments, Mauritius, 9–12 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Patel, B.R. Wireless Charging of Implantable Pacemaker’s Battery. J. Biosens. Bioelectron. 2018, 9, 258. [Google Scholar] [CrossRef]
- Sun, L.; Ma, D.; Tang, H. A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew. Sustain. Energy Rev. 2018, 91, 490–503. [Google Scholar] [CrossRef]
- Feng, H.; Tavakoli, R.; Onar, O.C.; Pantic, Z. Advances in High-Power Wireless Charging Systems: Overview and Design Considerations. IEEE Trans. Transp. Electrif. 2020, 6, 886–919. [Google Scholar] [CrossRef]
- Choi, S.Y.; Gu, B.W.; Jeong, S.Y.; Rim, C.T. Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 18–36. [Google Scholar] [CrossRef]
- Brizi, D.; Fontana, N.; Tucci, M.; Barmada, S.; Monorchio, A. A Spiral Resonators Passive Array for Inductive Wireless Power Transfer Applications With Low Exposure to Near Electric Field. IEEE Trans. Electromagn. Compat. 2020, 62, 1312–1322. [Google Scholar] [CrossRef]
- Mou, X.; Gladwin, D.T.; Zhao, R.; Sun, H. Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging. IET Power Electron. 2019, 12, 3005–3020. [Google Scholar] [CrossRef] [Green Version]
- Cirimele, V.; Diana, M.; Freschi, F.; Mitolo, M. Inductive Power Transfer for Automotive Applications: State-of-the-Art and Future Trends. IEEE Trans. Ind. Appl. 2018, 54, 4069–4079. [Google Scholar] [CrossRef]
- Orasanu, A.; Dragomir, A.; Bobaru, L.; Iordache, M.; Deleanu, S. On Optimization of Wireless Power Transfer Systems. In Proceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 1–3 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bi, Z.; Kan, T.; Mi, C.C.; Zhang, Y.; Zhao, Z.; Keoleian, G.A. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl. Energy 2016, 179, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Lukic, S.; Pantic, Z. Cutting the Cord: Static and Dynamic Inductive Wireless Charging of Electric Vehicles. IEEE Electrif. Mag. 2013, 1, 57–64. [Google Scholar] [CrossRef]
- Siqi, L.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar] [CrossRef]
- Triviño, A.; González-González, J.M.; Aguado, J.A. Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies 2021, 14, 1547. [Google Scholar] [CrossRef]
- Di Capua, G.; Maffucci, A.; Stoyka, K.; Di Mambro, G.; Ventre, S.; Cirimele, V.; Freschi, F.; Villone, F.; Femia, N. Analysis of Dynamic Wireless Power Transfer Systems Based on Behavioral Modeling of Mutual Inductance. Sustainability 2021, 13, 2556. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Buja, G.; Dashora, H.K. Design of DWC System Track with Unequal DD Coil Set. IEEE Trans. Transp. Electrif. 2017, 3, 380–391. [Google Scholar] [CrossRef]
- Bavastro, D.; Canova, A.; Cirimele, V.; Freschi, F.; Giaccone, L.; Guglielmi, P.; Repetto, M. Design of Wireless Power Transmission for a Charge While Driving System. IEEE Trans. Magn. 2014, 50, 965–968. [Google Scholar] [CrossRef]
- Yakala, R.K.; Pramanick, S.; Nayak, D.P.; Kumar, M. Optimization of Circular Coil Design for Wireless Power Transfer System in Electric Vehicle Battery Charging Applications. Trans. Indian Natl. Acad. Eng. 2021, 6, 765–774. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Di Barba, P.; Forzan, M.; Mognaschi, M.E.; Sieni, E. Wireless Power Transfer System in Dynamic Conditions: A Field-Circuit Analysis. Vehicles 2022, 4, 234–242. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Di Barba, P.; Dughiero, F.; Mognaschi, M.E.; Sieni, E. Multicriterion Synthesis of an Electric Circuit for Wireless Power Transfer Systems. Przegląd Elektrotechniczny 2020, 96, 188–192. [Google Scholar] [CrossRef]
- Zhang, W.; Mi, C.C. Compensation Topologies of High-Power Wireless Power Transfer Systems. IEEE Trans. Veh. Technol. 2016, 65, 4768–4778. [Google Scholar] [CrossRef]
- Feng, H.; Cai, T.; Duan, S.; Zhang, X.; Hu, H.; Niu, J. A Dual-Side-Detuned Series–Series Compensated Resonant Converter for Wide Charging Region in a Wireless Power Transfer System. IEEE Trans. Ind. Electron. 2018, 65, 2177–2188. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Vu, V.-B.; Gohil, G.; Fahimi, B. Coil-to-Coil Efficiency Optimization of Double-Sided LCC Topology for Electric Vehicle Inductive Chargers. IEEE Trans. Ind. Electron. 2022, 69, 11242–11252. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Z.; Hou, Y.; Li, X.; Xie, Y.; Zhai, H.; Wei, X. Analysis of harmonic characteristics based on improved double-LCC compensation network structure. Energy Rep. 2022, 8, 891–902. [Google Scholar] [CrossRef]
- Barmada, S.; Dionigi, M.; Mezzanotte, P.; Tucci, M. Design and experimental characterization of a combined WPT–PLC system. Wirel. Power Transf. 2017, 4, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Barmada, S.; Tucci, M. Optimization of a magnetically coupled resonators system for Power Line Communication integration. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms, 1st ed.; John Wiley & Sons: Chichester, UK; New York, NY, USA, 2001. [Google Scholar]
- Forrest, S. Genetic Algorithms: Principles of Natural Selection Applied to Computation. Science 1993, 261, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, L.M. Theory of genetic algorithms. Theor. Comput. Sci. 2001, 259, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, N.; Deb, K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Fonseca, C.M.; Fleming, P.J. An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 1995, 3, 1–16. [Google Scholar] [CrossRef]
- Lahanas, M.; Schreibmann, E.; Milickovic, N.; Baltas, D. Evolutionary Multi-Criterion Optimization; Springer: Berlin/Heidelberg, Germany, 2003; p. 70. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Guo, Y.; Tao, C.; Ji, L. Power Stabilization With Double Transmitting Coils and T-Type Compensation Network for Dynamic Wireless Charging of EV. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1801–1812. [Google Scholar] [CrossRef]
- Yang, M.; Li, Y.; Du, H.; Li, C.; He, Z. Hierarchical Multiobjective H-Infinity Robust Control Design for Wireless Power Transfer System Using Genetic Algorithm. IEEE Trans. Control Syst. Technol. 2019, 27, 1753–1761. [Google Scholar] [CrossRef]
- Ning, P.; Onar, O.; Miller, J. Genetic algorithm based coil system optimization for wireless power charging of electric vehicles. In Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 16–19 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Buja, G.; Bertoluzzo, M.; Mude, K.N. Design and Experimentation of WPT Charger for Electric City Car. IEEE Trans. Ind. Electron. 2015, 62, 7436–7447. [Google Scholar] [CrossRef]
- Budhia, M.; Covic, G.A.; Boys, J.T. Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems. IEEE Trans. Power Electron. 2011, 26, 3096–3108. [Google Scholar] [CrossRef]
- Budhia, M.; Boys, J.T.; Covic, G.A.; Huang, C. Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems. IEEE Trans. Ind. Electron. 2013, 60, 318–328. [Google Scholar] [CrossRef]
- J2954_202010 Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology. 2020. Available online: https://www.sae.org/standards/content/j2954_202010/ (accessed on 4 July 2022).
- FLUX, (Altair). Available online: https://altairhyperworks.com/product/flux (accessed on 4 July 2022).
- Ferroxcube, (n.d.). Available online: https://www.ferroxcube.com/en-global (accessed on 4 July 2022).
- Le-Duc, T.; Meunier, G.; Chadebec, O.; Guichon, J.-M. A New Integral Formulation for Eddy Current Computation in Thin Conductive Shells. IEEE Trans. Magn. 2012, 48, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Le-Duc, T.; Meunier, G.; Chadebec, O.; Guichon, J.-M.; Bastos, J.P.A. General Integral Formulation for the 3D Thin Shell Modeling. IEEE Trans. Magn. 2013, 49, 1989–1992. [Google Scholar] [CrossRef] [Green Version]
- Guerin, C.; Meunier, G. 3-D Magnetic Scalar Potential Finite Element Formulation for Conducting Shells Coupled With an External Circuit. IEEE Trans. Magn. 2012, 48, 323–326. [Google Scholar] [CrossRef]
- Morisue, T. Magnetic vector potential and electric scalar potential in three-dimensional eddy current problem. IEEE Trans. Magn. 1982, 18, 531–535. [Google Scholar] [CrossRef]
- Meunier, G. (Ed.) The Finite Element Method for Electromagnetic Modeling; ISTE ; Wiley: London, UK; Hoboken, NJ, USA, 2008. [Google Scholar]
- Binns, K.J.; Lawrenson, P.J.; Trowbridge, C.W. The Analytical and Numerical Solution of Electric and Magnetic Fields; Wiley: Chichester, UK, 1992. [Google Scholar]
- Esteve, V.; Jordán, J.; Dede, E.J.; Sanchis-Kilders, E.; Martinez, P.J.; Maset, E.; Gilabert, D. Optimal LLC Inverter Design With SiC MOSFETs and Phase Shift Control for Induction Heating Applications. IEEE Trans. Ind. Electron. 2022, 69, 11100–11111. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Giacomuzzi, S.; Sieni, E. Automatic Optimization of the Compensation Networks of a Wireless Power Transfer System. Energies 2020, 13, 5298. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Di Barba, P.; Forzan, M.; Mognaschi, M.E.; Sieni, E. Multiobjective optimization of compensation networks for wireless power transfer systems. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2021, 41, 674–689. [Google Scholar] [CrossRef]
- Patil, D.; Sirico, M.; Gu, L.; Fahimi, B. Maximum efficiency tracking in wireless power transfer for battery charger: Phase shift and frequency control. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Graovac, D.D.; Pürschel, M.; Kiep, A. MOSFET Power Losses Calculation Using the Data- Sheet Parameters. Infineon Appl. Note 2006, 1, 1–23. [Google Scholar]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef] [Green Version]
Material | μr | ρ [Ωm] |
---|---|---|
Ferrite 3C95 | 3000 (saturation 530 mT) | 5 |
steel | 1000 | 14 × 10−8 |
aluminum | 1 | 2.6 × 10−8 |
x [mm] | 0 | 50 | 100 | 150 | 200 | 300 | 400 | 500 | 600 |
---|---|---|---|---|---|---|---|---|---|
M [μH] | 28.9 | 26.0 | 18.8 | 10.25 | 3.1 | −2.7 | −1.6 | −0.5 | −0.1 |
Lt [μH] | 116.4 | 116.7 | 117.2 | 117.7 | 117.5 | 115.7 | 117.3 | 118.7 | 117.4 |
Lr [μH] | 113.2 | 113.2 | 113.2 | 113.0 | 112.7 | 111.1 | 110.1 | 110.0 | 110.1 |
Power Profile | PL(0) (kW) | PL,p.u..max | xpmax (mm) | η | Opt. Problem | CNs Composition |
---|---|---|---|---|---|---|
A | 0.97 | 1.06 | 100 | 0.90 | 1 | |
B | 1.03 | 1.76 | 173 | 0.89 | 1 | |
C | 3.15 | 1.64 | 123 | 0.83 | 1 | |
D | 2.25 | 2.27 | 151 | 0.85 | 1 | |
E | 1.69 | 1.07 | 105 | 0.82 | 2 | |
F | 2.50 | 1.46 | 159 | 0.80 | 2 | |
G | 3.18 | 2.34 | 191 | 0.82 | 2 | |
H | 0.63 | 1.27 | 141 | 0.84 | 2 | R.C. |
I | 2.80 | 1.49 | 161 | 0.86 | 2 | R.C. |
J | 2.52 | 1.82 | 175 | 0.86 | 2 | R.C. |
K | 2.07 | 2.14 | 172 | 0.89 | 2 | R.C. |
L | 0.66 | 1.51 | 160 | 0.83 | 3 | R.C. |
M | 3.26 | 1.23 | 143 | 0.83 | 3 | R.C. |
N | 0.77 | 4.48 | 207 | 0.82 | 3 | R.C. |
O | 2.48 | 1.41 | 157 | 0.85 | 3 | R.C. |
Power Profile | X1,t (Ω) | X2,t (Ω) | X3,t (Ω) | X4,t (Ω) | X5,t (Ω) | X6,t (Ω) | O.F(f1) | O.F(f2) |
---|---|---|---|---|---|---|---|---|
A | 63.3 | −5.81 | −34.2 | −12.9 | −37.7 | 252.1 | 0.90 | 3388.33 |
B | 68.4 | −0.7 | −34.0 | −10.3 | −38.7 | 251.9 | 0.83 | 11,363.72 |
C | 65.6 | −1.6 | −33.8 | −17.6 | −44.0 | 251.7 | 0.85 | 10,442.11 |
D | 66.4 | −0.2 | −33.9 | −18.6 | −41.4 | 252.1 | 0.90 | 5394.30 |
E | 126.1 | −296.0 | −306.3 | −13.2 | −40.3 | 460.9 | 112.01 | 1103.99 |
F | 125.9 | −295.7 | −287.1 | −20.0 | −34.7 | 463.6 | 213.00 | 1355.46 |
G | 127.8 | −290.9 | −294.8 | −10.3 | −45.1 | 464.3 | 331.61 | 1573.74 |
H | −46.2 | −19.9 | 165.9 | −15.2 | −57.6 | −158.3 | 401.62 | 254.47 |
I | 20.8 | −98.8 | −37.0 | −35.2 | −33.3 | −219.4 | 1516.51 | 915.10 |
J | 20.3 | −96.7 | −39.4 | −35.4 | −33.5 | −219.4 | 1866.40 | 1192.95 |
K | −68.6 | 29.0 | 214.5 | −58.3 | −2.4 | −498.4 | 1794.83 | 1365.26 |
L | −149.2 | −223-2 | 80.6 | −1.0 | −76.0 | −317.9 | 1705.49 | 243.15 |
M | 7.0 | −71.4 | −10.4 | −0.8 | −84.4 | −301.3 | 10,305.27 | 1064.63 |
N | −153.9 | −234.2 | 80.9 | −1.1 | −76.2 | −318.1 | 2153.36 | 284.35 |
O | −35.1 | 6.8 | 63.2 | 0 | −60.7 | −497.2 | 7496.86 | 746.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertoluzzo, M.; Di Barba, P.; Forzan, M.; Mognaschi, M.E.; Sieni, E. Optimization of Compensation Network for a Wireless Power Transfer System in Dynamic Conditions: A Circuit Analysis Approach. Algorithms 2022, 15, 261. https://doi.org/10.3390/a15080261
Bertoluzzo M, Di Barba P, Forzan M, Mognaschi ME, Sieni E. Optimization of Compensation Network for a Wireless Power Transfer System in Dynamic Conditions: A Circuit Analysis Approach. Algorithms. 2022; 15(8):261. https://doi.org/10.3390/a15080261
Chicago/Turabian StyleBertoluzzo, Manuele, Paolo Di Barba, Michele Forzan, Maria Evelina Mognaschi, and Elisabetta Sieni. 2022. "Optimization of Compensation Network for a Wireless Power Transfer System in Dynamic Conditions: A Circuit Analysis Approach" Algorithms 15, no. 8: 261. https://doi.org/10.3390/a15080261
APA StyleBertoluzzo, M., Di Barba, P., Forzan, M., Mognaschi, M. E., & Sieni, E. (2022). Optimization of Compensation Network for a Wireless Power Transfer System in Dynamic Conditions: A Circuit Analysis Approach. Algorithms, 15(8), 261. https://doi.org/10.3390/a15080261