Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.1.1. Agents
2.1.2. Environment Component
2.1.3. Disease
2.1.4. Transport
2.1.5. Society
2.1.6. Schedule
2.1.7. Initial Conditions
2.1.8. Interventions
Lockdowns and School Closures
Contact Tracing
Vaccinations
2.2. Model Validation
2.2.1. Cross Validation
2.2.2. Sensitivity Analysis
2.2.3. Comparison to Real Data
2.3. Model Testing
3. Results
3.1. Validation
3.1.1. Cross Validation
3.1.2. Sensitivity Analysis
3.1.3. Comparison to Real Data
3.2. Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABM | Agent-Based Model |
IEMAG | Irish Epidemiological Modeling Advisory Group |
SIR | Susceptible, Infected, Recovered |
SEIR | Susceptible, Exposed, Infected, Recovered |
CSO | Central Statistics Office |
ODD | Overview, Design Concepts and Details |
References
- Department of Health. Pandemic Flu—A National Framework for Responding to an Influenza Pandemic; Technical Report; The Pandemic Influenza Preparedness Team Department of Health: London, UK, 2007. [Google Scholar]
- Kao, R.R. The Role of Mathematical Modelling in the Control of the 2001 FMD Epidemic in the UK. Trends Microbiol. 2002, 10, 279–286. [Google Scholar] [CrossRef]
- Simpson, C.R.; Beever, D.; Challen, K.; Angelis, D.D.; Fragaszy, E.; Goodacre, S.; Hayward, A.; Lim, W.S.; Rubin, G.J.; Semple, M.G.; et al. The UK’s pandemic influenza research portfolio: A model for future research on emergin infections. Lancet Infect. Dis. 2019, 19, e295–e300. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, N.; Laydon, D.; Nedjati Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunuba Perez, Z.; Cuomo-Dannenburg, G.; et al. Report 9: Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID19 Mortality and Healthcare Demand; Technical Report; Imperial College: London, UK, 2020. [Google Scholar]
- Gleeson, J.P.; Brendan Murphy, T.; O’Brien, J.D.; Friel, N.; Bargary, N.; O’Sullivan, D.J.P. Calibrating COVID-19 susceptible-exposed-infected-removed models with time-varying effective contact rates. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380, 20210120. [Google Scholar] [CrossRef]
- Scott, N.; Palmer, A.; Delport, D.; Abeysuriya, R.; Stuart, R.M.; Kerr, C.C.; Mistry, D.; Klein, D.J.; Sacks-Davis, R.; Heath, K.; et al. Modelling the impact of relaxing COVID-19 control measures during a period of low viral transmission. Med. J. Aust. 2021, 214, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hethcote, H.W. The Mathematics of Infectious Diseases. Soc. Ind. Appl. Math. Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Fan, Z.; Gang, G.; Zhang, P.; Qiu, X. Mathematical and Computational Approaches to Epidemic Modeling: A Comprehensive Review. Front. Comput. Sci. 2015, 9, 806–826. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.; Duggan, J. An evaluation of Hamiltonian Monte Carlo performance to calibrate age-structured compartmental SEIR models to incidence data. Epidemics 2020, 33, 100415. [Google Scholar] [CrossRef]
- Pang, L.; Ruan, S.; Liu, S.; Zhao, Z.; Zhang, X. Transmission Dynamics and Optimal Control of Measles Epidemics. Appl. Math. Comput. 2014, 256, 131–147. [Google Scholar] [CrossRef]
- Adam, D. Special report: The simulations driving the world’s response to COVID-19. Nature 2020, 580, 316–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, E.; Mac Namee, B.; Kelleher, J. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS ONE 2018, 13, 1–35. [Google Scholar] [CrossRef]
- Kerr, C.C.; Stuart, R.M.; Mistry, D.; Abeysuriya, R.G.; Rosenfeld, K.; Hart, G.R.; Núñez, R.C.; Cohen, J.A.; Selvaraj, P.; Hagedorn, B.; et al. Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Comput. Biol. 2021, 17, 1–32. [Google Scholar] [CrossRef]
- Hoertel, N.; Blachier, M.; Blanco, C.; Olfson, M.; Massetti, M.; Rico, M.S.; Limosin, F.; Leleu, H. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat. Med. 2020, 26, 1417–1421. [Google Scholar] [CrossRef]
- Almagor, J.; Picascia, S. Exploring the effectiveness of a COVID-19 contact tracing app using an agent-based model. Sci. Rep. 2020, 10, 22235. [Google Scholar] [CrossRef]
- Thompson, J.; McClure, R.; Blakely, T.; Wilson, N.; Baker, M.G.; Wijnands, J.S.; De Sa, T.H.; Nice, K.; Cruz, C.; Stevenson, M. Modelling SARS-CoV-2 disease progression in Australia and New Zealand: An account of an agent-based approach to support public health decision-making. Aust. N. Z. J. Public Health 2022, 46, 292–303. [Google Scholar] [CrossRef]
- Bobashev, G.V.; Goedecke, D.M.; Yu, F.; Epstein, J.M. A Hybrid Epidemic Model: Combining The Advantages of Agent-Based and Equation Based-Approaches. In Proceedings of the 2007 Winter Simulation Conference, Washington, DC, USA, 9–12 December 2007; pp. 1532–1537. [Google Scholar] [CrossRef]
- Hunter, E.; Mac Namee, B.; Kelleher, J. A Hybrid Agent-Based and Equation Based Model for the Spread of Infectious Diseases. J. Artif. Soc. Soc. Simul. 2020, 23, 14. [Google Scholar] [CrossRef]
- Montañola-Sales, C.; Gilabert-Navarro, J.F.; Casanovas-Garcia, J.; Prats, C.; López, D.; Valls, J.; Cardona, P.J.; Vilaplana, C. Modeling tuberculosis in Barcelona. A solution to speed-up agent-based simulations. In Proceedings of the 2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 1295–1306. [Google Scholar] [CrossRef]
- Hunter, E.; Mac Namee, B.; Kelleher, J.D. A Model for the Spread of Infectious Diseases in a Region. Int. J. Environ. Res. Public Health 2020, 17, 3119. [Google Scholar] [CrossRef]
- Wilensky, U. Netlogo: Center for Connected Learning and Computer-Based Modeling; Northwestern University: Evanston, IL, USA, 1999. [Google Scholar]
- Hunter, E.; Kelleher, J.D. Adapting an Agent-Based Model of Infectious Disease Spread in an Irish County to COVID-19. Systems 2021, 9, 41. [Google Scholar] [CrossRef]
- Hunter, E.; Mac Namee, B.; Kelleher, J.D. A Taxonomy for Agent-Based Models in Human Infectious Disease Epidemiology. J. Artif. Soc. Soc. Simul. 2017, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- CSO. Census 2011 Boundary Files. 2014. Available online: http://www.cso.ie/en/census/census2011boundaryfiles/ (accessed on 26 May 2016).
- Central Statistics Office (CSO). Census 2016 Place of Work, School or College-Census of Anonymised Records (POWSCAR). 2017. Available online: https://www.cso.ie/en/census/census2016reports/powscar/ (accessed on 5 September 2018).
- Hunter, E.; Kelleher, J.D. An ODD-Protocol for Agent-Based Model for the Spread of COVID-19 in Ireland. Reports 2022, 1. Available online: https://arrow.tudublin.ie/sknowmanrep/1/ (accessed on 14 April 2022).
- Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G.S.; Wallinga, J.; et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med. 2008, 5, e74. [Google Scholar] [CrossRef]
- Hansen, C.H.; Michlmayr, D.; Gubbels, S.M.; Mølbak, K.; Ethelberg, S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: A population-level observational study. Lancet 2021, 397, 1204–1212. [Google Scholar] [CrossRef]
- Thomas, J.C.; Weber, D.J. Concepts of Transmission and Dynamics. In Epidemiologic Methods for the Study of Infectious Diseases; Oxford University Press: New York, NY, USA, 2001; pp. 61–62. [Google Scholar]
- Rodrigue, J.P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Routledge, Taylor and Francis Group: London, UK, 2006. [Google Scholar]
- Martin, J.; Carroll, C.; Khurshid, Z.; Moore, G.; Cosgrove, G.; Conway, R.; Buckley, C.; Browne, M.; Flynn, M.; Doyle, S. An overview of the establishment of a national contact tracing programme: A quality improvement approach in a time of pandemic. HRB Open Res. 2022, 5, 12. [Google Scholar] [CrossRef]
- Carroll, C.; Conway, R.; O’Donnell, D.; Norton, C.; Hogan, E.; Browne, M.; Buckley, C.M.; Kavanagh, P.; Martin, J.; Doyle, S. Routine testing of close contacts of confirmed COVID-19 cases—National COVID-19 Contact Management Programme, Ireland, May to August 2020. Public Health 2021, 190, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.; Kelleher, J.D. A Framework for Validating and Testing Agent-based Models: A Case Study from Infectious Diseases Modelling. In Proceedings of the 34th annual European Simulation and Modelling Conference, Toulouse, France, 21–23 October 2020. [Google Scholar] [CrossRef]
- OSI. COVID-19 HPSC Detailed Statistics Profile. 2022. Available online: https://data.gov.ie/dataset/covid-19-hpsc-detailed-statistics-profile?package_type=dataset (accessed on 10 March 2022).
- Larosa, E.; Djuric, O.; Cassinadri, M.; Cilloni, S.; Bisaccia, E.; Vicentini, M.; Venturelli, F.; Rossi, P.G.; Pezzotti, P.; Bedeschi, E.; et al. Secondary transmission of COVID-19 in preschool and school settings in northern Italy after their reopening in September 2020: A population-based study. Eurosurveillance 2020, 25, 2001911. [Google Scholar] [CrossRef]
- Heavey, L.; Casey, G.; Kelly, C.; Kelly, D.; McDarby, G. No evidence of secondary transmission of COVID-19 from children attending school in Ireland, 2020. Eurosurveillance 2020, 25, 2000903. [Google Scholar] [CrossRef]
- Liu, Y.; Gayle, A.A.; Wilder-SMith, A.; Rocklov, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020. [Google Scholar] [CrossRef] [Green Version]
Date | Lockdown | School Closure | Vaccinations | Reduction in Mixing |
---|---|---|---|---|
1 February 2020 | No | No | No | Normal |
12 March 2020 | No | Yes | No | Reduced to 50% |
27 March 2020 | Yes | Yes | No | Reduced to 33% |
20 April 2020 | Yes | Yes | No | Reduced to 17% |
1 June 2020 | Yes | Yes | No | Reduced to 33% |
29 June 2020 | No | Yes | No | No Change |
1 September 2020 | No | No | No | No Change |
1 October 2020 | No | No | No | Increased to 60% |
21 October 2020 | Yes | No | No | Increased to 33% |
1 December 2020 | No | No | No | Normal Mixing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunter, E.; Kelleher, J.D. Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland. Algorithms 2022, 15, 270. https://doi.org/10.3390/a15080270
Hunter E, Kelleher JD. Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland. Algorithms. 2022; 15(8):270. https://doi.org/10.3390/a15080270
Chicago/Turabian StyleHunter, Elizabeth, and John D. Kelleher. 2022. "Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland" Algorithms 15, no. 8: 270. https://doi.org/10.3390/a15080270
APA StyleHunter, E., & Kelleher, J. D. (2022). Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland. Algorithms, 15(8), 270. https://doi.org/10.3390/a15080270