Temari Balls, Spheres, SphereHarmonic: From Japanese Folkcraft to Music
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tonnetz in Music Theory, Triangles as Triads
2.2. Basic Divisions of Temari
2.3. Concept and Visualization of SphereHarmonic
3. Results
3.1. Computing Combinatorial Patterns of Temari Balls
3.2. Prototype of C8
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peterson, M. Dante and the 3-Sphere. Am. J. Phys. 1979, 47, 1031. Available online: https://mathinees-lacaniennes.net/images/stories/articles/dante.pdf (accessed on 8 August 2022). [CrossRef]
- Fathauer, R. Tessellations: Mathematics, Art, and Recreation; Routledge: London, UK, 2021. [Google Scholar]
- Ernst, B. The Magic Mirror of M.C. Escher; Random House Chapman & Hall Pure and Applied Mathematics: New York, NY, USA, 1976. [Google Scholar]
- Lipschütz, H.; Skrodzki, M.; Reitebuch, U.; Polthier, K. Linked Knots from the gyro Operation on the Dodecahedron. In Proceedings of the Bridges 2022: Mathematics, Art, Music, Architecture, Culture, Helsinki and Espoo, Finland, 1–5 August 2022; pp. 175–182. Available online: https://archive.bridgesmathart.org/2022/bridges2022-175.pdf (accessed on 8 August 2022).
- Yackel, C. Teaching Temari: Geometrically Embroidered Spheres in the Classroom. In Proceedings of the Bridges Conference 2011, Coimbra, Portugal, 27–31 July 2011; pp. 563–566. Available online: https://archive.bridgesmathart.org/2012/bridges2012-563.pdf (accessed on 8 August 2022).
- Belcastro, S.M.; Yackel, C. Crafting by Concepts: Fiber Arts and Mathematics; AK Peters/CRC Recreational Mathematics Series: Boca Raton, FL, USA, 2011. [Google Scholar]
- Suess, B.B. Temari Techniques: A Visual Guide to Making Japanese Embroidered Thread Balls; Breckling Press: Elmhurst, Australia, 2012. [Google Scholar]
- Leibniz, G.W. De Arte Combinatoria. 1666. Available online: https://www.math.ucla.edu/~pak/hidden/papers/Quotes/Leibniz-Arte-Combinatoria.pdf (accessed on 8 August 2022).
- Zweig, J. Ars Combinatoria. Art J. 2014, 56, 20–29. Available online: https://www.janetzweig.com/zweig.ars-combinatoria.pdf (accessed on 8 August 2022). [CrossRef]
- “Ars combinatoria.” Treccani, Online Encyclopedia. Available online: https://www.treccani.it/enciclopedia/ars-combinatoria/ (accessed on 8 August 2022).
- “Lullo, Raimondo (Radmond Lull).” Treccani, Online Encyclopedia. Available online: https://www.treccani.it/enciclopedia/raimondo-lullo/ (accessed on 8 August 2022).
- Brlek, S.; Chemillier, M.; Reutenauer, C. Music and combinatorics on words: A historical survey. J. Math. Music 2018, 12, 125–133. [Google Scholar] [CrossRef]
- Allouche, J.-P.; Johnson, T. Combinatorics of words and morphisms in some pieces of Tom Johnson. J. Math. Music 2018, 12, 248–257. [Google Scholar] [CrossRef]
- Hook, J. Why are there twenty-nine tetrachords? Music Theory Online. 2007. Available online: https://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html (accessed on 8 August 2022).
- Fripertinger, H. Enumeration in Musical Theory. Beiträge zur Elektronischen Musik 1. 1999. Available online: https://www.emis.de/journals/SLC/opapers/s26fripert.pdf (accessed on 8 August 2022).
- Fenton, W.E. Teaching permutations through rhythm patterns. J. Math. Arts 2008, 3, 143–146. [Google Scholar] [CrossRef]
- Amiot, E.; Baroin, G. Old and New Isometries between pc Dets in the Planet-4D Model. Music Theory Online. 2015. Available online: https://mtosmt.org/issues/mto.15.21.3/mto.15.21.3.amiot-baroin.html (accessed on 8 August 2022).
- Baroin, G. The planet-4D model: An original hypersymmetric music space based on graph theory. In Mathematics and Computation in Music, Proceedings of the Third International Conference, MCM 2011, Paris, France, 15–17 June 2011; Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 326–329. [Google Scholar] [CrossRef]
- Peck, R. Combinatorial Spaces. In Mathematics and Computation in Music, Proceedings of the 8th International Conference, MCM 2022, Atlanta, GA, USA, 21–24 June 2022; Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B., Eds.; Lecture Notes in Computer Science, 13267; Springer: Cham, Germany, 2022; pp. 48–60. [Google Scholar] [CrossRef]
- Mannone, M.; Kitamura, E.; Huang, J.; Sugawara, R.; Chiu, P.; Kitamura, Y. CubeHarmonic: A New Musical Instrument Based on Rubik’s Cube with Embedded Motion Sensor. In Proceedings of the ACM SIGGRAPH ’19, Los Angeles, CA, USA, 28 July –1 August 2019; pp. 53:1–53:2. [Google Scholar] [CrossRef]
- Yust, J. Generalized Tonnetze and Zeitnetze, and the topology of music concepts. J. Math. Music 2020, 14, 170–203. [Google Scholar] [CrossRef]
- Jedrzejewski, F. Non-Contextual JQZ Transformations. In Mathematics and Computation in Music, Proceedings of the 7th International Conference, MCM 2019, Madrid, Spain, 18–21 June 2019; Editors, M., Montiel, F., Gomez-Martin, O., Agustin-Aquino, O.A., Eds.; Springer: Cham, Germany, 2019; pp. 149–160. [Google Scholar]
- Cannas, S.; Polo, M. Euler’s “Tentamen”: Historical and Mathematical Aspects on the Consonance Theory. In Mathematics and Computation in Music, Proceedings of the 8th International Conference, MCM 2022, Atlanta, GA, USA, 21–24 June 2022; Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B., Eds.; Lecture Notes in Computer Science; Springer: Cham, Germany, 2022; Volume 13267. [Google Scholar]
- Baroin, G.; de Gérando, S. When Virtual Reality Helps Fathom Mathemusical Hyperdimensional Models. In Mathematics and Computation in Music, Proceedings of the 8th International Conference, MCM 2022, Atlanta, GA, USA, 21–24 June 2022; Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B., Eds.; Springer: Cham, Germany, 2022; pp. 86–98. [Google Scholar]
- Crans, A.; Fiore, T.; Satyendra, R. Musical Actions of Dihedral Groups. Am. Math. Mon. 2009, 116, 479–495. [Google Scholar] [CrossRef]
- Alegant, B.; Mead, A. Having the last word: Schoenberg and the ultimate cadenza. Music. Theory Spectr. 2012, 34, 107–136. [Google Scholar] [CrossRef]
- Mannone, M.; Kitamura, E.; Huang, J.; Sugawara, R.; Kitamura, Y. Musical Combinatorics, Tonnetz, and the CubeHarmonic. Zb. Rad. Akad. Umet. 2018, 5, 104–116. Available online: https://scindeks-clanci.ceon.rs/data/pdf/2334-8666/2018/2334-86661806104M.pdf (accessed on 8 August 2022). [CrossRef]
- Diamond, A. The Temari Book: Techniques and Patterns for Making Japanese Thread Balls; Lars Books: Asheville, NC, USA, 1999. [Google Scholar]
- Coxeter, H.S.M. Regular Compound Tessellations of the Hyperbolic Plane. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 1964, 1373, 147–167. [Google Scholar]
- Feeman, T.G. Portraits of the Earth: A Mathematician Looks at Maps; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Mannone, M.; Yoshino, T.; Chiu, P.; Kitamura, Y. Hypercube + Rubik’s Cube + Music = HyperCubeHarmonic. In Mathematics and Computation in Music, Proceedings of the 8th International Conference, MCM 2022, Atlanta, GA, USA, 21–24 June 2022; Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B., Eds.; Lecture Notes in Computer Science. Springer: Cham, Germany, 2022; Volume 13267, pp. 240–252. Available online: https://link.springer.com/chapter/10.1007/978-3-031-07015-0_20 (accessed on 8 August 2022).
- Plaxco, D. Photogenic Knot Projections on n×n×n Rubik’s Cubes. In Proceedings of the Bridges 2022: Mathematics, Art, Music, Architecture, Culture, Helsinki and Espoo, Finland, 1–5 August 2022; pp. 331–334. Available online: https://archive.bridgesmathart.org/2022/bridges2022-331.pdf (accessed on 8 August 2022).
Divisions | Number of Triangles | Number of Axes | Amount of Rotations | |
---|---|---|---|---|
Sn | 1 | |||
C6 | 24 | 6 | ||
C8 | 48 | 9 | 6 | |
3 | ||||
C10 | 120 | 15 |
Divisions | Number of Vertices | Degree of Vertices | Number of Combinations | |
---|---|---|---|---|
Sn | 2 | n | ||
n | 4 | |||
C6 | 10 | 6 | 4 | 4356 |
4 | 6 | 48,400 | ||
C8 | 26 | 12 | 4 | 76,176 |
8 | 6 | 4,096,576 | ||
6 | 8 | 112,911,876 | ||
C10 | 62 | 30 | 4 | 3,132,900 |
20 | 6 | 1,171,008,400 | ||
12 | 10 | 29,828,113,326,144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannone, M.; Yoshino, T. Temari Balls, Spheres, SphereHarmonic: From Japanese Folkcraft to Music. Algorithms 2022, 15, 286. https://doi.org/10.3390/a15080286
Mannone M, Yoshino T. Temari Balls, Spheres, SphereHarmonic: From Japanese Folkcraft to Music. Algorithms. 2022; 15(8):286. https://doi.org/10.3390/a15080286
Chicago/Turabian StyleMannone, Maria, and Takashi Yoshino. 2022. "Temari Balls, Spheres, SphereHarmonic: From Japanese Folkcraft to Music" Algorithms 15, no. 8: 286. https://doi.org/10.3390/a15080286
APA StyleMannone, M., & Yoshino, T. (2022). Temari Balls, Spheres, SphereHarmonic: From Japanese Folkcraft to Music. Algorithms, 15(8), 286. https://doi.org/10.3390/a15080286