A Coupled Variational System for Image Decomposition along with Edges Detection
Abstract
:1. Introduction
2. Prior Work
3. The Proposed Model and Algorithm
3.1. The Proposed Model
3.2. Algorithm
Algorithm 1 Given the initial value. |
Step 1: Compute by (17), Step 2: Compute by (18), Step 3: Compute by (19), Until: A stopping criterion is satisfied; otherwise set and return to Step 1. |
4. Experimental Results and Discussion
4.1. The Parameters Selection Discussion
4.2. Image Decomposition Results Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudin, L.; Osher, S.; Fatemi, E. Nonlinear Total Variation based Noise Removal Algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Meyer, Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations; The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, Vol. 22 of University Lecture Series; American Mathematical Society: Boston, MA, USA, 2001. [Google Scholar]
- Vese, L.; Osher, S. Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing. J. Sci. Comput. 2003, 19, 553–572. [Google Scholar] [CrossRef]
- Osher, S.; Sole, A.; Vese, L. Image Decomposition and Restoration Using Total Variation Minimization and the H−1 norm. Multiscale Modeling Simul. 2003, 1, 349–370. [Google Scholar] [CrossRef]
- Aujol, J.; Aubert, G.; Blanc-Feraud, L.; Chambolle, A. Image Decomposition into a Bounded Variation Component and an Oscillating Component. J. Math. Imaging Vis. 2005, 22, 71–88. [Google Scholar] [CrossRef]
- Aujol, J.; Chambolle, A. Dual Norms and Image Decomposition Models. Int. J. Comput. Vis. 2005, 63, 85–104. [Google Scholar] [CrossRef]
- Garnett, J.B.; Le, T.M.; Meyer, Y.; Vese, L.A. Image Decompositions Using Bounded Variation and Generalized Homogeneous Besov Spaces. Appl. Comput. Harmon. Anal. 2007, 23, 25–56. [Google Scholar] [CrossRef]
- Ng, M.; Yuan, X.; Zhang, W. Coupled Variational Image Decomposition and Restoration Model for Blurred Cartoon- plus-Texture Images with Missing Pixels. IEEE Trans. Image Process. 2013, 22, 2233–2246. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.; Ng, M. A Cartoon-plus-Texture Image Decomposition Model for Blind Deconvolution. Multidimens. Syst. Signal Process. 2016, 27, 541–562. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, J.; Wu, C.; Cai, Y. Variational Structure–Texture Image Decomposition on Manifolds. Signal Process. 2013, 93, 1773–1784. [Google Scholar] [CrossRef]
- Xu, J.; Hao, Y.; Li, M.; Zhang, X. A Novel Variational Model for Image Decomposition. Signal Image Video Process. 2019, 13, 967–974. [Google Scholar] [CrossRef]
- Xu, J.; Shang, W.; Hao, Y. A New Cartoon + Texture Image Decomposition Model Based on the Sobolev Space. Signal Image Video Process. 2022, 16, 1569–1576. [Google Scholar] [CrossRef]
- Song, J.; Cho, H.; Yoon, J.; Yoon, S.M. Structure Adaptive Total Variation Minimization-Based Image Decomposition. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2164–2176. [Google Scholar] [CrossRef]
- Han, Y.; Xu, C.; Baciu, G.; Li, M. Lightness Biased Cartoon-and-Texture Decomposition for Textile Image Segmentation. Neurocomputing 2015, 168, 575–587. [Google Scholar] [CrossRef]
- Xu, J.; Hao, Y.; Zhang, X.; Zhang, J. A Cartoon + Texture Image Decomposition Variational Model Based on Preserving the Local Geometric Characteristics. IEEE Access 2020, 8, 46574–46584. [Google Scholar] [CrossRef]
- Chan, T.F.; Esedoglu, S.; Park, F.E. Image Decomposition Combining Staircase Reduction and Texture Extraction. J. Vis. Commun. Image Represent. 2007, 18, 464–486. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, J.; Bai, J.; Han, Y. Image Decomposition Combining a Total Variational Filter and a Tikhonov Quadratic Filter. Multidimens. Syst. Signal Process. 2015, 26, 739–751. [Google Scholar] [CrossRef]
- Xu, J.; Feng, X.; Hao, Y.; Han, Y. Image Decomposition Using Adaptive Second-order Total Generalized Variation. Signal Image Video Process. 2014, 8, 39–47. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, H.; He, C.; Fan, Z. Non-convex and Non-smooth Variational Decomposition for Image Restoration. Appl. Math. Model. 2019, 69, 355–377. [Google Scholar]
- Liu, X. A New TGV-Gabor Model for Cartoon-Texture Image Decomposition. IEEE Signal Process. Lett. 2018, 25, 1221–1225. [Google Scholar] [CrossRef]
- Jin, Y.; Jost, J.; Wang, G. A Nonlocal Version of the Osher-Solé-Vese Model. J. Math. Imaging Vis. 2011, 44, 99–113. [Google Scholar] [CrossRef]
- Xu, L.; Yan, Q.; Xia, Y.; Jia, J. Structure Extraction from Texture via Relative Total Variation. ACM Trans. Graph. 2012, 31, 439–445. [Google Scholar] [CrossRef]
- Starck, J.-L.; Elad, M.; Donoho, D. Image Decomposition via the Combination of Sparse Representations and a Variational Approach. IEEE Trans. Image Process. 2005, 14, 1570–1582. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chan, R.; Shen, Z. Simultaneous Cartoon and Texture Inpainting. Inverse Probl. Imaging 2010, 4, 379–395. [Google Scholar] [CrossRef]
- Xu, R.; Xu, Y.; Quan, Y. Structure-Texture Image Decomposition Using Discriminative Patch Recurrence. IEEE Trans. Image Process. 2021, 30, 1542–1555. [Google Scholar] [CrossRef]
- Buades, A.; Le, T.; Morel, J.; Vese, L. Fast Cartoon + Texture Image Filters. IEEE Trans. Image Process. 2010, 19, 1978–1986. [Google Scholar] [CrossRef]
- Tadmor, E.; Athavale, P. Multiscale Image Representation Using Integro-Differential Equations. Inverse Probl. Imaging 2009, 3, 693–710. [Google Scholar] [CrossRef]
- Tadmor, E.; Nezzar, S.; Vese, L. A Multiscale Image Representation Using Hierarchical (BV;L2) Decompositions. Multiscale Modeling Simul. 2003, 2, 554–579. [Google Scholar] [CrossRef]
- Tadmor, E.; Nezzar, S.; Vese, L. Multiscale Hierarchical Decomposition of Images with Applications to Deblurring, Denoising and Segmentation. Commun. Math. Sci. 2008, 6, 281–307. [Google Scholar]
- Tang, L.; He, C. Multiscale Texture Extraction with Hierarchical (BV,Gp,L2) Decomposition. J. Math. Imaging Vis. 2013, 45, 148–163. [Google Scholar] [CrossRef]
- Schaeer, H.; Osher, S. A Low Patch-Rank Interpretation of Texture. SIAM J. Imaging Sci. 2013, 6, 226–262. [Google Scholar] [CrossRef]
- Song, J.; Yoon, G.; Yoon, S. Monolithic Image Decomposition. Neurocomputing 2019, 366, 264–275. [Google Scholar] [CrossRef]
- Han, D.; Kong, W.; Zhang, W. A Partial Splitting Augmented Lagrangian Method for Low Patch-Rank Image Decomposition. J. Math. Imaging Vis. 2015, 51, 145–160. [Google Scholar] [CrossRef]
- Zhang, Z.; He, H. A Customized Low-Rank Prior Model for Structured Cartoon–Texture Image Decomposition. Signal Process. Image Commun. 2021, 96, 116308. [Google Scholar] [CrossRef]
- Ono, S.; Miyata, T.; Yamada, I. Cartoon-Texture Image Decomposition Using Blockwise Low-Rank Texture Characterization. IEEE Trans. Image Process. 2014, 23, 1128–1142. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ham, B.; Do, M.; Sohn, K. Structure-Texture Image Decomposition Using Deep Variational Priors. IEEE Trans. Image Process. 2019, 28, 2692–2704. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Chen, Q.; Liu, B.; Qiu, G. Structure and Texture-Aware Image Decomposition via Training a Neural network. IEEE Trans. Image Process. 2020, 29, 3458–3473. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.; Wang, Q.; Zhang, J. Deep Generalized Unfolding Network for Image Restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 17399–17410. [Google Scholar]
- Prasath, V.; Vorotnikov, D. On A System of Adaptive Coupled PDEs for Image Restoration. J. Math. Imaging Vis. 2014, 48, 35–52. [Google Scholar] [CrossRef]
- Moreno, J.C.; Prasath, V.B.; Vorotnikov, D.; Proença, H.; Palaniappan, K. Adaptive Diffusion Constrained Total Variation Scheme with Application to ‘Cartoon + Texture + Edge’ Image Decomposition. arXiv 2015. [Google Scholar] [CrossRef]
- Perona, P.; Malik, J. Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef]
- Catte, V.; Lions, P.; Morel, J.; Coll, T. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. SIAM J. Numer. Anal. 1992, 29, 182–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Guo, Y.; Hao, Y.; Huo, L. A Coupled Variational System for Image Decomposition along with Edges Detection. Algorithms 2022, 15, 288. https://doi.org/10.3390/a15080288
Xu J, Guo Y, Hao Y, Huo L. A Coupled Variational System for Image Decomposition along with Edges Detection. Algorithms. 2022; 15(8):288. https://doi.org/10.3390/a15080288
Chicago/Turabian StyleXu, Jianlou, Yuying Guo, Yan Hao, and Leigang Huo. 2022. "A Coupled Variational System for Image Decomposition along with Edges Detection" Algorithms 15, no. 8: 288. https://doi.org/10.3390/a15080288
APA StyleXu, J., Guo, Y., Hao, Y., & Huo, L. (2022). A Coupled Variational System for Image Decomposition along with Edges Detection. Algorithms, 15(8), 288. https://doi.org/10.3390/a15080288